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We study the statistical properties of wave scattering in a disordered waveguide. The statistical properties of
a “building block” of length �L are derived from a potential model and used to find the evolution with length
of the expectation value of physical quantities. In the potential model the scattering units consist of thin
potential slices, idealized as delta slices, perpendicular to the longitudinal direction of the waveguide; the
variation of the potential in the transverse direction may be arbitrary. The sets of parameters defining a given
slice are taken to be statistically independent from those of any other slice and identically distributed. In the
dense-weak-scattering limit, in which the potential slices are very weak and their linear density is very large,
so that the resulting mean free paths are fixed, the corresponding statistical properties of the full waveguide
depend only on the mean free paths and on no other property of the slice distribution. The universality that
arises demonstrates the existence of a generalized central-limit theorem. Our final result is a diffusion equation
in the space of transfer matrices of our system, which describes the evolution with the length L of the
disordered waveguide of the transport properties of interest. In contrast to earlier publications, in the present
analysis the energy of the incident particle is fully taken into account. For one propagating mode, N=1, we
have been able to solve the diffusion equation for a number of particular observables, and the solution is in
excellent agreement with the results of microscopic calculations. In general, we have not succeeded in finding
a solution of the diffusion equation. We have thus developed a numerical simulation, to be called “random walk
in the transfer matrix space,” in which the universal statistical properties of a “building block” are first
implemented numerically, and then the various building blocks are combined to find the statistical properties of
the full waveguide. The reported results thus obtained �in which use was made of a “short-wavelength ap-
proximation”� are in very good agreement with those arising from truly microscopic calculations, for both bulk
and surface disorder. Since the paper has a clear pedagogical aim, we have included, for the benefit of experts
and nonexperts, a number of appendixes that contain the more involved calculations.
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I. INTRODUCTION

The statistical theory of certain complex wave interfer-
ence phenomena, such as the statistical fluctuations of trans-
mission and reflection of waves, is of considerable interest in
many fields of physics �1–12�. In the literature one has con-
templated situations in which such a complexity derives
from the chaotic nature of the underlying classical dynamics,
as in the case of chaotic microwave cavities and quantum
dots, or from the quenched randomness of scattering poten-
tials, as in the case of disordered conductors or, more in
general, disordered waveguides. It is the latter domain that
will interest us here.

In studies performed in such systems one has found re-
markable statistical regularities, in the sense that the prob-
ability distribution for various macroscopic quantities in-
volves a rather small number of relevant physical
parameters, or scaling parameters, while the rest of the mi-
croscopic details serves as mere “scaffolding.” In Ref. �13� it
was shown that a limiting distribution of physical quantities
indeed arises in the so-called dense-weak-scattering limit
�DWSL� and within a particular class of models: the indi-
vidual, microscopic, scattering units were defined through
their transfer matrices and an “isotropic” distribution of their
phases was assumed. The limiting distribution that was
found constitutes a generalized central-limit theorem �CLT�.

Within this model only one relevant physical parameter oc-
curs: the mean free path �MFP�, which is the only property
arising from the individual scattering units that survives in
the DWSL. This is consistent with the scaling hypothesis
proposed by Abrahams et al. �14�. �When abandoning the
DWSL, two parameters were needed in Ref. �15� to describe
the conductance distribution.� The result found in Ref. �13�
coincides with that of the maximum-entropy model that had
been developed in Ref. �16�, which gives rise to a diffusion
equation known as the DMPK equation �after Dorokhov �17�
and Mello, Pereyra and Kumar �16��, which can thus be in-
terpreted as capturing the features arising from a CLT. CLT’s
associated with products of matrices had been studied earlier,
as, for instance, in the well-known Oseledec theorem �6,18�;
the results of Refs. �13,16� are consistent with this theorem
in the localized regime.

An alternative approach to the study of disordered con-
ductors goes back to the work by Efetov and Larkin �19,20�.
One uses a microscopic Hamiltonian with a white-noise ran-
dom potential as a starting point and reduces the problem, in
some well-controlled approximations, to the investigation of
an effective field-theoretic model describing diffusion modes
�the so-called nonlinear sigma model�. In the quasi-one-
dimensional �Q1D� case this method allows for quite a few
properties of the system to be investigated in detail �20,21�.
It is interesting to note that if the system is characterized
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by a single microscopic length scale—the mean-free-path
l—which is, for example, the case for bulk disorder with
isotropic scattering, the supersymmetry method described in
this paragraph and the DMPK approach are known to be
equivalent �22�. Frequently, however, one is interested in
situations when the scattering is not isotropic, as in samples
with rough surface and no bulk disorder. In principle, the
supersymmetry approach is able to deal with the problem;
however, in practice the calculations in that case are much
more involved and not that much was done in this direction.

In spite of the successes of the DMPK equation of Ref.
�16� in the study of the conductance distribution �6�, that
equation fails to give the proper description when the differ-
ence in behavior of the various modes becomes relevant. A
clear example was given in Ref. �23�, where the conductance
distribution was studied in the crossover region �G��e2 /h.
For waveguides with bulk disorder the description is excel-
lent, whereas for waveguides with surface disorder it is not
satisfactory �11,24�.

A class of limiting distributions wider than that of Ref.
�13� was studied by one of the present authors and Tomsovic
in Ref. �25� �to be referred to as MT�, in which the isotropy
assumption of Ref. �13� was relaxed to a large extent. The
DWSL played an essential role and the result was a more
general CLT than that of Ref. �13�, expressed in terms of a
generalized diffusion equation. The scaling parameters that
appear in MT are the MFP’s for the various scattering pro-
cesses that may occur in the problem. When the various
MFP’s can be represented by a single one, one encounters
the same diffusion equation that was studied in Ref. �16�
using a maximum-entropy model. Thus the MT model ap-
pears as a possible candidate to study, in the problem of
waveguides with surface disorder, the influence of the spe-
cific scattering properties of the relevant modes.

The ideas of MT are further developed in the “Brownian-
motion” model of Ref. �26�: a waveguide of length L is en-
larged by adding a piece of thickness �L �to be called a
“building block” �BB��, small on a macroscopic scale but
still containing many scatterers, which is likened to a Brown-
ian particle which, in a time interval �t, small on a macro-
scopic scale, still suffers many collisions from the molecules
of the surrounding medium. The transfer matrix for a BB is
written as M = I+� and the independent parameters which M
depends upon are chosen so that � for the BB satisfies a
number of properties, reminiscent of those of a Brownian
particle:

����L = 0 + O��L2� , �1.1a�

�����L = O��L� , �1.1b�

while higher moments of � behave as higher powers of �L
�see Eqs. �3.73� and �3.74� of Ref. �26��. The result of this
analysis is the same diffusion equation as that of MT.

Though appealing the assumptions behind the Brownian-
motion model of Ref. �26� for the BB may be, they are,
nevertheless, arbitrary. Of course, they can be deduced from
the MT model for the more microscopic scattering units.
However, even these have a certain degree of arbitrariness. It
would be satisfactory if these models could be obtained in a

unified way from a maximum-entropy “ansatz:” this, how-
ever, is not known to the present authors at this time.

The motivation of the present paper is to derive from a
potential model the statistical properties of the BB and use
them to find the “evolution” with length of the expectation
value of physical quantities. Since the potential model will
be introduced at the level of the individual scattering units,
the approach to be presented here is, in a way, hybrid be-
tween the methods of MT and Ref. �26�. We shall see that
within the present model it is not strictly true that the indi-
vidual transfer matrices �resulting from the individual poten-
tials� for the various scatterers are identically distributed �see
Eq. �3.24� below�, as was assumed in MT, and this fact will
be taken into account. The continuous limit is also treated
here in a more satisfactory way than in MT, and the energy
appears explicitly in the following presentation, in contrast to
earlier publications. We believe that the present model is
physically more complete than that of Ref. �16�; it is also
better founded than that of MT and Ref. �26�, in the sense
that there is a lesser degree of arbitrariness in the assump-
tions, although the resulting diffusion equation has a “struc-
ture” similar to the one obtained in MT and Ref. �26�. Our
diffusion equation will be found suitable to study wave-
transport problems in which the physics of the various modes
is relevant, as is the case of waveguides with surface disor-
der, instead of bulk disorder; we shall also find a good de-
scription of the statistical properties of quantities that involve
phases, which were not described at all in previous models.
The reader is referred to Ref. �27� for a preliminary account
of the results of the present paper.

The paper is organized as follows. In the next section we
derive a Fokker-Planck equation for the “evolution” with the
waveguide length L of the expectation value of the physical
quantities of interest. That equation represents the central
result of the present paper and is given in Eq. �2.10�, which
we reproduce here for convenience:

��F�M��L

�L
= �

ijhl��

abcd��

Dab,cd
ij,hl �k,L�	Mb�

j� Md�
l� �2F�M�

�Ma�
i� �Mc�

h�

L

.

�1.2�

We notice that Eq. �1.2� contains no drift term and is thus a
diffusion equation. The physical observable is denoted by
F�M�, M being the transfer matrix of the sample of length L.
The quantities Dab,cd

ij,hl �k ,L� play the role of “diffusion coeffi-
cients,” which are defined in terms of the second moments of
� for the BB in Eq. �3.51� below �see the term linear in �L�
and are given explicitly in Eq. �3.52� in terms of the mean
free paths. Notice that the diffusion coefficients depend on
the energy ��k2� and also on the length L of the sample. The
mean free paths depend only on the second moments of the
potential intensity of the individual impurities �see Eq.
�3.36��, higher moments being irrelevant for the diffusion
equation: this is precisely what signals the existence of a
CLT. In order to derive the diffusion equation �1.2� we need
a statistical model for the building block �BB�: this is derived
in Sec. III using a potential model for the random impurities.
Although the treatment of Sec. II is applicable to the or-
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thogonal as well as to the unitary symmetry classes of
random-matrix theory ��=1 and 2, respectively �28��, the
potential model developed in Sec. III assumes time-reversal
invariance, i.e., �=1. Some of the specific relations derived
there would have to be properly modified for the unitary case
�=2. The results of Sec. III which are needed for the deri-
vation of the diffusion equation �1.2� have an intrinsic inter-
est as well, since they can be used to describe the statistical
scattering properties of thin slabs. The diffusion equation
�1.2� is first derived for arbitrary energy, and only later the
short-wavelength approximation �SWLA� is contemplated; it
is in this latter limit that some of the results obtained earlier
can be recovered. Needless to say, we have no general way
of finding either analytically or numerically the solutions of
the above diffusion equation. We thus give in Sec. IV A
some simple examples in which the analytic solution could
be found; in Sec. IV B we develop a procedure to simulate
numerically the diffusion process in transfer-matrix space,
and present some of the results that we have been able to
obtain so far. The conclusions of this work are given in Sec.
V. Since some of the calculations tend to be somewhat in-
volved, we have included most of them in a number of ap-
pendixes in order not to interrupt the general reasoning in the
main text. This is done for pedagogical purposes, for the
benefit, we hope, of both experts and nonexperts in the field.
The calculations not contained in this paper can be found in
Ref. �29�.

II. TRANSPORT IN Q1D DISORDERED SYSTEMS:
THE COMBINATION LAW, THE SMOLUCHOWSKY

EQUATION AND THE DIFFUSION EQUATION

Consider a Q1D disordered system of uniform cross sec-
tion, connected, at both ends, to clean waveguides that sup-
port N open channels each. In the disordered region there is
an underlying random potential to be specified later. In some
applications we shall be concerned with a 2D waveguide
with a width to be denoted by W.

The scattering properties of the system will be described
by means of its transfer matrix M, which can be written as

M = �M11 M12

M21 M22
 � �� �

� �

 . �2.1�

Each block Mij �i=1,2; j=1,2� in �2.1� is N-dimensional, so
that M is 2N-dimensional. �The block M12 will occasionally
be denoted by �, a symbol not to be confused with the index
for universality classes in random-matrix theory.� One par-
ticular matrix element of the ij block will be designated as
Mab

ij , where a ,b�=1, . . . ,N� denote the channels. Some of the

properties of the M matrix and its relation with the more
conventional reflection and transmission amplitudes, which
are elements of the S matrix, are summarized in Appendix A.

The transfer matrix M will be considered to belong to one
of the basic symmetry classes introduced by Dyson in quan-
tum mechanics �28�. Here we shall be only concerned with
scalar waves, so that, in applications to quantum mechanics,
we shall only have “spinless electrons.” In the “unitary”
case, also denoted by �=2, the only restriction on M is flux
conservation �FC�, which is expressed by the pseudounitarity
condition �A2�. In the “orthogonal” case ��=1�, time-
reversal invariance �TRI� imposes the restriction given by
Eq. �A3�. The “symplectic” case ��=4� associated with half-
integral spin will not be considered here.

If the underlying potential has non-zero matrix elements
between open and closed channels, the 2N-dimensional M
matrix depends on an “effective potential” which contains
information on closed channels, as explained in Appendix B.

Consider now two nonoverlapping scatterers. Their ex-

tended transfer matrices M̃1 and M̃2 �which include open and
closed channels, are infinite dimensional and depend on the
bare potential, as opposed to the effective one�, have the
multiplicativity property

M̃ = M̃2M̃1. �2.2�

In past publications by one of the authors �P.A.M.� �see, for
instance, Ref. �10��, closed channels have been neglected in
the matrix multiplication of successive scatterers. In numeri-
cal simulations �11,30� one sees that for individual configu-
rations of the disordered system and in the calculation of the
mean free path, the inclusion of closed channels is important.
�In this paper, the expressions “closed channels” and “eva-
nescent modes” will be taken as synonymous.� On the other
hand, for the statistical fluctuations the conditions for ne-
glecting the evanescent modes do not appear to be very strin-
gent. For a given mean free path, the statistical properties of
the different transport coefficients are found to be roughly
independent of the number of evanescent modes �see also the
discussion of the numerical simulations given in Sec.
IV B 3�. In this article we shall thus follow the earlier ap-
proximation and write the resulting transfer matrix as the
product of the individual open-channel transfer matrices.

Suppose we start with a system containing n scattering
units �to be defined at the beginning of Sec. III� and enlarge
it by adding, on its right-hand side, say, a slab, to be called a
building block �BB�, containing m scattering units. Designat-
ing by M�L� the transfer matrix of the original system and by
M��L� that of the BB, the resulting transfer matrix is

FIG. 1. Schematic representation of a disor-
dered wire and the building block �BB�; �a� and
�b� correspond to the different regimes �see Sec.
III� defined by the inequalities given in Eqs.
�3.1a� and �3.1b� �short-wavelength approxima-
tion �SWLA��, respectively.
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M�L+�L� = M��L�M�L�. �2.3�

We assume the BB to be of arbitrary thickness �L, and to
contain many weak scatterers �see Fig. 1�.

Its transfer matrix M��L� will be written as

M��L� = I2N + � . �2.4�

The combination law for M, Eq. �2.3�, can be written as

M�L+�L� = M�L� + �M �2.5a�

=M�L� + �M�L�. �2.5b�

Consider now a function F�M� of the M matrix, which we
shall call an “observable:” it could be, for instance, the trans-
mission amplitude tab, or the conductance G, which is pro-
portional to the total transmission coefficient T. We are in-
terested in the expectation value �F�M��n of such an
observable for a system containing n impurities. We first find
below a recurrence relation with n for that expectation value
and then, in the continuous limit, we shall find the equation
that governs the “evolution” of �F�M��L with increasing
length L.

We first analyze the restrictions imposed on the M matrix
elements by the presence of TRI alone, a property which is
relevant to the orthogonal universality class �=1. If we write
a particular M matrix element as Mab

ij =	ab
ij + i
ab

ij , the TRI
relation, Eq. �A4�, implies that only the real and imaginary
parts of the blocks M11 and M12 are relevant. Alternatively,
we may consider F�M� as a function
F(M11, �M11�* ,M12, �M12�*), a procedure which will be
found more convenient in what follows; however, for conve-
nience in the notation, we shall write M22 as a shorthand for
�M11�* and M21 for �M12�* and thus consider F�M� as a func-
tion F�M11,M22,M12,M21�, enforcing �A4� at the end of the
calculation. With this procedure, TRI is exactly fulfilled. The
orthogonal case is the one we shall restrict to in what fol-
lows. For the unitary case �=2, we just mention that one
would need to consider the real and imaginary parts of the
four blocks or, alternatively, the four blocks and their com-
plex conjugates.

Writing the composition law for the M matrix as in Eq.
�2.5�, the expressions for the observable F�M� before and
after adding the building block are related by the Taylor ex-
pansion �in terms of the variables discussed in the previous
paragraph�

F�M�n+m�� = F�M�n� + �M� = F�M�n�� + �
i�

a�

��Ma�
i� �

�� �F�M�
�Ma�

i� �
M=M�n�

+
1

2! �
i�h�

a�c�

��Ma�
i� ���Mc�

h��

�� �2F�M�
�Ma�

i� �Mc�
h��

M=M�n�
+ ¯ , �2.6�

where the lower indices a ,� , . . ., on each M indicate chan-
nels and run over the values 1 , . . . ,N, while the upper indices

i ,� , . . ., identify the block in Eq. �2.1� and take on the values
1 ,2.

In Eq. �2.6�, the �ab
ij occurring in each �Mab

ij is a function
of the m potentials defining the BB, as will be explained in
the next section. Similarly, Mab

ij depends implicitly on the n
potentials defining the original waveguide. Multiplying both
sides of Eq. �2.6� by the appropriate probability
distributions—assuming the two pieces n and m to be statis-
tically independent—we find

�F�M��n+m = �F�M��n + �
ij�

ab�

��ab
ij �m	Mb�

j� �F�M�
�Ma�

i� 

n

+
1

2! �
ijhl��

abcd��

��ab
ij �cd

hl �m	Mb�
j� Md�

l� �2F�M�
�Ma�

i� �Mc�
h�


n

+ ¯ . �2.7�

Here, �¯�n denotes an average evaluated with the probabil-
ity density for the transfer matrix of the original sample con-
taining n scattering units, i.e.,

�G�M��n � �G�M�n��� . �2.8�

The next step is to describe the problem in the dense-
weak-scattering limit �DWSL� briefly described in the Intro-
duction �and defined in Eqs. �3.39a�–�3.39d� below�, so that
we can speak of the continuous length L of the system and
the length �L of the BB. Eq. �2.7� becomes

�F�M��L+�L = �F�M��L + �
ij�

ab�

��ab
ij �L,�L	Mb�

j� �F�M�
�Ma�

i� 

L

+
1

2! �
ijhl��

abcd��

��ab
ij �cd

hl �L,�L	Mb�
j� Md�

l� �2F�M�
�Ma�

i� �Mc�
h�


L

+ ¯ . �2.9�

To proceed, we need a statistical model for the BB. For
this purpose, a potential model is discussed in Sec. III, in
which the BB is constructed as a collection of m individual
scattering units represented by delta-potential slices. It is
found that the first moment of � for the BB vanishes �see Eq.
�3.29��, the second moments, in the DWSL, admit an expan-
sion in powers of �L starting with �L itself �see Eq. �3.51��,
while higher moments behave as higher powers thereof �see
the discussion following Eq. �D19��. Also, the very important
result emerges that the dependence on the cumulants of the
potential higher than the second drops out in the DWSL.
These results are reminiscent of the statistical behavior of the
velocity increment of a Brownian particle during a time in-
terval �t during which many collisions from the surrounding
medium have occurred �31�.

When the moments of the BB, evaluated in the DWSL,
are substituted in Eq. �2.9�, we obtain, on the RHS of that
equation, a power series in �L. We also perform, on the LHS
of Eq. �2.9�, a Taylor expansion of �F�M��L+�L in powers of
�L around the “initial” value �F�M��L. We can then identify
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the coefficients of the various powers of �L on the two sides
of the equation. In particular, the coefficients of �L give the
diffusion equation

��F�M��L

�L
= �

ijhl��

abcd��

Dab,cd
ij,hl �k,L�	Mb�

j� Md�
l� �2F�M�

�Ma�
i� �Mc�

h�

L

.

�2.10�

The quantities Dab,cd
ij,hl �k ,L� play the role of “diffusion coeffi-

cients:” they are defined in Eq. �3.51� below as proportional
to the coefficient of the linear term in an expansion in powers
of �L of the second moment of � for the BB and are given
explicitly in Eq. �3.52� in terms of the mean free paths. The
diffusion coefficients depend on the energy ��k2� and also
on the length L of the sample.

We remark that, just as the coefficients of �L in Eq. �2.9�
are expressible in terms of the MFP’s, the coefficients of
higher-order terms in �L have a similar property, because the
contribution of higher moments becomes irrelevant in the
DWSL. Equating the coefficients of such higher-order terms
on both sides of Eq. �2.9� we obtain results which could be
derived from the diffusion equation �2.10� by successive dif-
ferentiations. �See comment right after Eq. �3.56�.�

In the potential model discussed in the next section only
the orthogonal case �=1 is contemplated. We expect a simi-
lar behavior for the unitary class �=2, although we do not
have at the present moment the specific expression for each
diffusion coefficient in this case.

Equation �2.10� represents the central result of the present
paper. It depends only on the mean free paths which, in turn,
depend only on the second moments of the individual delta-
potential strengths �Eq. �3.36��. The fact that cumulants of
the potential higher than the second are irrelevant in the end
signals the existence of a generalized CLT: once the MFP’s
are specified, the limiting equation �2.10� is universal, i.e.,
independent of other details of the microscopic statistics.

The transfer matrix M must fulfill the properties �A2� and
�A3�–�A4� arising from FC and TRI, respectively. These re-
lations are satisfied for the individual scatterers to be intro-
duced in the next section, so that they must be satisfied for a
system of any length. That �A4� is satisfied is obvious from
our construction explained right above Eq. �2.6�. The diffu-
sion coefficients appearing in Eq. �2.10� will be calculated in
the next section in terms of the potentials: they will thus be
fully consistent with FC and TRI. As explained right above
Eq. �2.7�, the last average appearing on the right-hand side of
the diffusion equation �2.10� is evaluated with the probability
distribution for the potentials inside the waveguide of length
L. Although this average is never evaluated explicitly, it
should be consistent with FC: provided the initial condition
L=0 satisfies FC, and since the diffusion coefficients of Eq.
�2.10� satisfy FC exactly, Eq. �2.10� “propagates” that infor-
mation as the length evolves starting from L=0. As an illus-
tration, this general assertion has been verified explicitly for
the N=1 case.

III. STATISTICAL PROPERTIES OF THE BUILDING
BLOCK

In the present section we investigate the statistical scatter-
ing properties of the BB which was used in Sec. II to build a

disordered system with a Q1D geometry �see Fig. 1�.
Suppose that we model the scatterers constituting the BB

by a sequence of thin slices �the scattering units referred to
right above Eq. �2.3�� of cross section WD−1 �D being the
dimensionality of the waveguide�. From now on we denote
the thickness of the slices by 2� and their separation by d.
�See Fig. 2. Notice that in Fig. 1 the same symbols refer to
individual scatterers; here, a slice may contain one or more
of the individual scatterers shown in Fig. 1.� The statistical
properties of the potential slices will be specified below �see
Sec. III B 1�. Inside 2�, the rth scattering slice is described
by the potential Vr�x ,y�. We denote by x the coordinate along
the waveguide and by y the coordinates in the transverse
direction. The distance d between slices is taken to be much
larger than �, but much smaller than the wavelength � of the
incident wave and the thickness �L of the BB. Initially we do
not specify the ratio of the wavelength � to �L or the mean-
free-path l �to be defined later�, so we shall start out con-
structing the BB as a collection of m thin slices satisfying the
inequalities

� � d � ��,�L,l� . �3.1a�

Later on, in Sec. III D, we shall find it advantageous to study
a second regime, in which �L �and hence any final L� and l
contain many wavelengths, i.e.,

� � d � � � ��L,l� , �3.1b�

corresponding to what we shall call the short-wavelength
approximation �SWLA�.

In principle we have no restriction on the dimensionality
D of the waveguide; however, to be specific, we shall restrict
the discussion to two-dimensional waveguides with uniform
width W. As we already indicated, in the potential model to
be presented below we shall be concerned with the orthogo-
nal, or �=1, symmetry class only.

A. Properties of a single scattering slice

Consider a single scattering slice with potential V�x ,y�
=
2U�x ,y� / �2m�, centered at the origin of coordinates x=0,
and let �U�x��ab be the matrix elements of U�x ,y� with re-
spect to the “transverse� states �a�y� of the waveguide, i.e.,

FIG. 2. Schematic representation of the construction of the
building block �BB� as a collection of “thin potential slices.�
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�U�x��ab = �
0

W

�a�y�U�x,y��b�y�dy , �3.2�

with

�a�y� =� 2

W
sin

�ay

W
, �3.3�

a being an integer. Under the conditions

k� � 1, �3.4a�

Kab� � 1, �3.4b�

where k=2� /�=�2mE /
 and

Kab
2 = �Uab� � ��U�0��ab� , �3.5�

we speak of a thin scatterer �a thin barrier or well� and the
dependence of the potential across the thickness 2� is ne-
glected. On the other hand, the quantity

2�Uab � uab �3.6�

�which has dimensions of k� is arbitrary. Such a scatterer can
be well approximated by the “delta potential”

U�x,y� = u�y���x� , �3.7a�

�U�x��ab = uab��x� , �3.7b�

obtained formally taking the limits

�Uab� → � , �3.8a�

� → 0, �3.8b�

in such a way that the quantity uab of Eq. �3.6� stays fixed.
From the inequalities �3.1� we see that the range 2� of the
potential is the smallest length scale in the problem: the limit
�3.8b� is the extreme idealization of this situation.

Equations �3.7� define a delta-slice potential centered at
the origin of coordinates. The potential produced by the rth
delta slice, centered at x=xr, is written as

Ur�x,y� = ur�y���x − xr� , �3.9a�

�Ur�x��ab = �ur�ab��x − xr� . �3.9b�

We remind the reader that Ur�x ,y� has dimensions of k2,
whereas ur�y� and �ur�ab have dimensions of k.

A particle scattered by the potential of Eq. �3.7� inside the
waveguide is described by the wave function

��x,y� = �
a=1

�

���x��a�a�y� , �3.10�

which satisfies Schrödinger’s equation; its components
���x��a satisfy the coupled equations

� �2

�x2 + ka
2����x��a = �

b=1

�

���x��b�ur�ab��x − xr�, 1 � a � N ,

�3.11a�

� �2

�x2 − �a
2����x��a = �

b=1

�

���x��b�ur�ab��x − xr�, a � N + 1.

�3.11b�

Equation �3.11a� refers to open channels and Eq. �3.11b� to
closed ones. The quantity ka, defined by the relation

ka
2 = k2 − ��a

W
�2

, �3.12�

is the “longitudinal” momentum for the open channel a, with
the replacement ka⇒ i�a for closed channels �10�. Notice
that if N��kW� �N+1��, the problem admits precisely N
open channels.

The open-channel 2N-dimensional transfer matrix M �that
relates open-channel amplitudes on both sides of the poten-
tial� for the rth slice, to be designated by Mr, will be written
as

Mr = � Mr
11 Mr

12

�Mr
12�* �Mr

11�*
 � I2N + �r. �3.13�

Since, eventually, we shall be interested in the limit of weak
scatterers in which Mr is close to the unit matrix, we have
introduced the difference �r between Mr and the
2N-dimensional unit matrix I2N. In the above equation we
have taken into account explicitly the fact that our system
obeys time-reversal invariance �see Eq. �A7��. The 11 and 12
blocks of the matrix �r are given by

��r�ab
11 = − i�v̂r�abe−i�ka−kb�xr � �v̂r�ab��r�ab

11 �3.14a�

��r�ab
12 = − i�v̂r�abe−i�ka+kb�xr � �v̂r�ab��r�ab

12, �3.14b�

where a and b label the open channels and thus run from 1 to
N. We have defined

��r�ab
jl = ���xr��ab

jl = i�− � jei��− �jka+�− �l+1kb�xr �3.15�

and we have introduced the real quantities
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�v̂r�ab =
�ûr�ab

2�kakb

, �3.16�

where, as explained in Appendix B, �ûr�ab is an “effective�
potential strength that takes into account transitions to closed
channels �see also Ref. �10�, Eq. �3.134��.

In the above equations the strength of the various scatter-
ers is arbitrary. As we already indicated, we shall be inter-
ested in the situation of weak scatterers, defined by the in-
equality

��ûr�ab� � �kakb, �3.17�

which has to be added to the inequalities �3.1a� and �3.1b� in
order to complete the specification of the physical regime.

B. Construction of the building block: The regime
(3.1a)

1. The statistical model

The BB is assumed, for the time being, centered at x=0.
For the application to Eq. �2.9� the BB will have to be trans-
lated to the interval �L ,L+�L�; this will be done in Sec.
III C. The BB is constructed from m delta slices located at
the positions xr �see Fig. 2�, i.e., assuming m to be odd,

xr = rd , �3.18a�

r = −
m − 1

2
, . . . ,0, . . . ,

m − 1

2
, �3.18b�

�L = �m − 1�d , �3.18c�

where d denotes the distance between successive slices and
�L the thickness of the BB.

The m potentials ûr�y�, r=1, . . . ,m, are assumed to be
statistically independent and identically distributed. We indi-
cate the pth moments of the individual ûr�y�’s and v̂r�y�
�which are related by the definition �3.16�� as

�p
�u��a1b1,a2b2, ¯ ,apbp� = ��ûr�a1b1

�ûr�a2b2
¯ �ûr�apbp

� ,

�3.19a�

�p
�v��a1b1,a2b2, ¯ ,apbp� = ��v̂r�a1b1

�v̂r�a2b2
¯ �v̂r�apbp

� .

�3.19b�

We assume, for simplicity, that all odd moments vanish, i.e.,

�2t+1
�u� �a1b1,a2b2, . . . ,a2t+1b2t+1� = 0. �3.20�

We thus have

��ûr�ab� = �1
�u��ab� = 0 �3.21a�

��ûr�ab�ûs�cd� = �2
�u��ab,cd��rs

¯ �3.21b�

and similarly for the v̂r’s. It is useful to introduce the corre-
lation coefficient between the matrix elements �ûr�ab and

�ûr�cd �which coincides with the correlation coefficient be-
tween �v̂r�ab and �v̂r�cd� as

C�ab,cd� =
�2

�u��ab,cd�
��2

�u��ab��2
�u��cd��1/2 =

�2
�v��ab,cd�

��2
�v��ab��2

�v��cd��1/2 ,

�3.22�

where �2
�v��ab���2

�v��ab ,ab� denotes the variance of �v̂r�ab

�recall that �1
�v��ab�=0�. For even moments higher than the

second we do not make, at this point, any special assump-
tion; a particular scaling law will be assumed in Eq. �3.40�
below.

From the statistics of the �ûr�ab’s �and �v̂r�ab’s� we can
find the statistics of the ��r�ab

ij , using the relations �3.14�. For
instance, we find that the first moment of ��r�ab

ij vanishes, i.e.,

���r�ab
ij � = 0 �3.23�

and that the second moments can be written as

���r�ab
ij ��s�cd

hl � = �2
�v��ab,cd����r�ab

ij ��r�cd
hl ��rs, �3.24�

where ��r�ab
ij was defined in Eqs. �3.14� and �3.15�. The in-

dividual transfer matrices depend on the slice position xr and,
as a consequence, they are not identically distributed.

2. The transfer matrix for the building block:
Its first and second moments

The transfer matrix for the total sequence of m delta slices
is given by

M�m� = MmMm−1 ¯ M1 �3.25a�

=�I2N + �m��I2N + �m−1� ¯ �I2N + �1� �3.25b�

=I2N + �
r

�r + �
r1�r2

�r1
�r2

+ ¯

+ �
r1�. . .�r�

�r1
¯ �r�

+ ¯ �3.25c�

�I2N + � . �3.25d�

The last line defines the matrix � �that was already intro-
duced in Eq. �2.4�� by which the total transfer matrix M of
the BB differs from the unit matrix I2N; it is given by

� = �
r

�r + �
r1�r2

�r1
�r2

+ ¯ + �
r1�¯�r�

�r1
¯ �r�

+ ¯

�3.26a�

� �
�=1

m

����, �3.26b�

where the last line defines the contribution to � of order � in
the individual �r’s. Our aim is to find the statistical
properties—in particular the moments—of the matrix �. In
the future we shall use the notation �¯��L to indicate an
average associated with the BB, i.e.,

�G�M���L � �G�M�m��� , �3.27�
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just as in Eq. �2.8�. For the average of M we trivially find,
from Eqs. �3.25a� and �3.25b� and the fact the various �r� are
statistically independent and average to zero �Eq. �3.23��,

�M��L = �Mm� ¯ �M1� = I2N. �3.28�

Thus Eq. �3.25d� implies that the first moment of � vanishes,
i.e.,

����L = 0, �3.29�

as could also have been obtained by averaging Eq. �3.26�
directly

����L = �
�=1

m

�������L �3.30a�

=�
r

��r� + �
r1�r2

��r1
�r2

� + ¯ + �
r1�. . .�r�

��r1
¯ �r�

� + ¯ = 0. �3.30b�

For the second moments of � we have, from Eq. �3.26b�

��ab
ij �cd

hl ��L = �
�,��=1

m

�������ab
ij �������cd

hl ��L = ����1��ab
ij ���1��cd

hl ��L �3.31a�

+ ����1��ab
ij ���2��cd

hl ��L + ����2��ab
ij ���1��cd

hl ��L �3.31b�

+ ����2��ab
ij ���2��cd

hl ��L + ����3��ab
ij ���1��cd

hl ��L + ����1��ab
ij ���3��cd

hl ��L + ¯ . �3.31c�

The second line �3.31a� is second order in the individual
��r�ab

ij and hence in the potentials �v̂r�ab, and the successive
lines are higher order in these quantities.

a. The second-order term in the second-moment expan-
sion, (3.31a). The second-order term �3.31a� in the second
moment expansion can be written using Eqs. �3.26� and
�3.24� as

����1��ab
ij ���1��cd

hl ��L = �
r,s

���r�ab
ij ��s�cd

hl � �3.32a�

=�
r,s

��v̂r�ab�v̂s�cd����r�ab
ij ��s�cd

hl � �3.32b�

=
�2

�v��ab,cd�
d

�
r

���r�ab
ij ��r�cd

hl �d . �3.32c�

From the definition of the correlation coefficient between
pairs of matrix elements, �3.22�, we can write the fraction in
Eq. �3.32c� as

�2
�v��ab,cd�

d
= C�ab,cd���2

�v��ab�
d

�2
�v��cd�

d

1/2

�
C�ab,cd�

�lab�k�lcd�k�
. �3.33�

Here we have used the standard definition of the mean free

path �MFP� lab associated with the incoherent sum of reflec-
tions from channel b to a from a sequence of �=1/d scatter-
ers per unit length, i.e.,

1

lab�k�
= ����r1�k��ab�2� , �3.34�

together with the fact that the average reflection coefficient
for a delta slice is r independent and approximately given, in
the weak-scattering regime, �3.17�, by �see Eqs. �A5�, �3.13�,
and �3.14��

���r1�ab�2� � ���v̂1�ab�2� . �3.35�

We can write the following equivalent expressions for the
inverse MFP:

1

lab�k�
= ��2

�v��ab� =
�2

�v��ab�
d

=
�2

�u��ab�
4kakbd

�
�̃2

�u��ab�
4kakb

,

�3.36�

where the energy dependence of the MFP is exhibited explic-
itly. It will be convenient to make the change of variables

ûab = ũab
�d �3.37�

and consider the distribution of ũab to be independent of
d, with a variance �̃2

�u��ab� �which was introduced in Eq.
�3.36��, related to �2

�u��ab� by
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�2
�u��ab� = �̃2

�u��ab�d . �3.38�

Since our delta slice is spatially symmetric in the x direction,
we have the same result for the MFP for the transmission,
out of the incident flux, from channel b to channel a. Within
the present model there is thus no distinction between the
so-called transport and scattering MFP’s �32�.

We now turn to the summation in Eq. �3.32c�. We shall
evaluate it in the dense-weak-scattering limit �DWSL� which
we now define �see Eqs. �3.39� below�. This limit was al-
ready referred to in Secs. I and II. Within the regime defined
by the inequalities �3.1a� we have already considered � as
the smallest length scale occurring in the problem and sim-
plified the situation by literally taking the limit �→0 �Eq.
�3.8b��. With regards to the next length scale in our regime,
i.e., the distance d between successive scattering slices, we
shall again be interested in a simplifying limit. For a fixed
energy �and hence fixed ��, fixed �L and MFP’s, it will be
convenient to take the continuous limit

d → 0, �3.39a�

m → � , �3.39b�

in such a way that

md = �L �3.39c�

remains fixed. From Eq. �3.37�, in the limit d→0 each indi-
vidual scatterer becomes infinitely weak and, from Eq.
�3.38�,

�2
�u��ab� → 0, �3.39d�

while the MFP’s lab of Eq. �3.36� remain fixed �for a fixed
energy�. The DWSL can be considered as the extreme ide-
alization of the inequality �3.17� and of the inequality d
� �� ,�L , l� of �3.1a� for fixed energy, �L and
MFP’s.

We have already assumed in Eq. �3.20� that all the odd
moments of û and v̂ vanish. From Eq. �3.19� with p=2t and
the change of variables �3.37� we see that the even moments
scale with d as

�2t
�u��a1b1, . . . ,a2tb2t� = dt�̃2t

�u��a1b1, . . . ,a2tb2t� ,

�3.40�

�̃2t
�u��a1b1 , . . . ,a2tb2t� being independent of d, with a similar

expression for �2t
�v��a1b1 , . . . ,a2tb2t�. Equation �3.38� is the

particular case of this last equation for t=1.
In the DWSL, the �r appearing in Eq. �3.32c� tends to an

integral, which we denote by

�ab,cd
ij,hl �k,�L� � lim

DWS
�

r

���r�ab
ij ��r�cd

hl �d

= �
−�L/2

�L/2

�ab
ij �x��cd

hl �x�dx , �3.41�

where �ab
ij �x� is given by Eq. �3.15� with xr replaced by x.

We find explicitly

�ab,cd
ij,hl �k,�L� = �− �i+h+1

sin
Kab,cd

ij,hl �L

2

Kab,cd
ij,hl

2

, �3.42�

a quantity with dimensions of length, Kab,cd
ij,hl being given by

Kab,cd
ij,hl = �− 1�ika + �− 1� j+1kb + �− 1�hkc + �− 1�l+1kd.

�3.43�

From Eq. �3.43�, and using the notation of Eq. �A8�, we
readily find the symmetry relations

Kab,cd
ij,hl = Kcd,ab

hl,ij = − Kab,cd
ī j̄,h̄ l̄ , �3.44�

so that

�ab,cd
ij,hl �k,�L� = �cd,ab

hl,ij �k,�L� = �ab,cd
ī j̄,h̄ l̄ �k,�L� . �3.45�

We thus have, for the expression �3.32� in the DWSL:

lim
DWS

����1��ab
ij ���1��cd

kl ��L =
C�ab,cd�

�lab�k�lcd�k�
�ab,cd

ij,hl �k,�L� ,

�3.46�

a result valid for arbitrary k and �L.
For the application to Eq. �2.9� we shall need the expan-

sion of the moments of � in powers of �L, with the BB
translated to the interval �L ,L+�L�; this will be done in Sec.
III C below. For the time being we perform that expansion,
for simplicity, with the BB centered at the origin. We see
from Eq. �3.42� that the leading term of �ab,cd

ij,hl �k ,�L� in an
expansion in powers of �L is linear in �L �as is obvious from
the integral definition itself, Eq. �3.41��, i.e.,

�ab,cd
ij,hl �k,�L� = �− �i+h+1�L + O��L�2. �3.47�

As a result, Eq. �3.46� shows that the leading term in an
expansion in powers of �L of the second-order contribution
to the second moments of � for the BB behaves, in the
DWSL, as

lim
DWS

����1��ab
ij ���1��cd

hl ��L = �− �i+h+1 C�ab,cd�
�lab�k�lcd�k�

�L + O��L�2.

�3.48�

b. The fourth-order term in the second-moment expansion,
Eq. (3.31c). A similar analysis is performed in Appendix C,
Eq. �C2�, for the fourth-order contribution to the second mo-
ments of �, Eq. �3.31c�: it is shown that the leading term of
such a quantity, in an expansion in powers of �L, behaves, in
the DWSL, as ��L / l�2, where l denotes a typical MFP �see
Eq. �C6��. From this result and Eq. �3.48� we thus have
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lim
DWS

��ab
ij �cd

hl ��L = �− �i+h+1 C�ab,cd�
�lab�k�lcd�k�

�L + O��L�2.

�3.49�

The analysis of the two above particular cases is general-
ized to arbitrary moments in Appendix D. For an even mo-
ment �p=2t� in the DWSL, the lowest-order term in Eq. �D1�
�this term is of order 2t in the v̂r’s� has a leading term in an
expansion in powers of �L which behaves as ��L / l�t. Higher-
order terms in �D1� are higher order in �L. Also, the depen-
dence on the cumulants of the potential higher than the sec-
ond drops out in the DWSL. The contribution to the second
moments obtained above, Eq. �3.49�, represents, for t=1, a
particular case of this general result. For an odd moment
�p=2t+1�, the corresponding term behaves as ��L / l�t+1. In
conclusion, this proves the behavior of the moments of � that
was mentioned in Sec. II, right after Eq. �2.9�.

C. The diffusion coefficients and the diffusion equation

We now generalize the above analysis to the situation in
which the BB lies in the interval �L ,L+�L�. The integral in
Eq. �3.41� has to be performed in that interval �the notation
�¯�L,�L in Eq. �2.9� and in some of the following equations
indicates this fact� and Eq. �3.46� becomes

lim
DWS

����1��ab
ij ���1��cd

hl �L,�L

=
C�ab,cd�

�lab�k�lcd�k�
�ab,cd

ij,hl �k,�L�eiKab,cd
ij,hl �L+�L/2�, �3.50�

while the expansion in Eq. �3.49� �taking into account Eq.
�C8�� is now

lim
DWS

��ab
ij �cd

hl �L,�L = 2Dab,cd
ij,hl �k,L��L + �iKab,cd

ij,hl Dab,cd
ij,hl �k,L�

+ 2 �
����,����

Da��,c��
i��,h�� �k,L�D��b,��d

��j,��l �k,L�

���L�2 + O��L�3, �3.51�

where Kab,cd
ij,hl was defined in Eq. �3.43�. In Eq. �3.51� we have

defined the “diffusion coefficients” Dab,cd
ij,hl �k ,L�

Dab,cd
ij,hl �k,L� = �− �i+h+1 C�ab,cd�

2�lab�k�lcd�k�
eiKab,cd

ij,hl L, �3.52�

which depend on the energy �through the energy dependence
of the MFP’s and through Kab,cd

ij,hl � and also on the length L.
Notice that the diffusion coefficients are, in general, complex
numbers; this, however, should not worry the reader, because
the evolution of real observables will always turn out to be
real �see, for instance, Eq. �4.5a� below�.

From the relations �3.44� we readily find for the diffusion
coefficients the symmetry properties

Dab,cd
ij,hl �k,L� = Dcd,ab

hl,ij �k,L� = �Dab,cd
ī j̄,h̄ l̄ �k,L��*. �3.53�

We introduce the expansion �3.51� and a similar one for
higher moments of � on the right-hand side �RHS� of Eq.
�2.9�, thus obtaining a power series in �L:

�F�M��L+�L = �F�M��L + �
ijhl,��

abcd,��

�Dab,cd
ij,hl �k,L��L

+ �1

2
iKab,cd

ij,hl Dab,cd
ij,hl �k,L�

+ �
����,����

Da��,c��
i��,h�� �k,L�D��b,��d

��j,��l �k,L�
��L�2�
� 	Mb�

j� Md�
l� �2F�M�

�Ma�
i� �Mc�

h�

L

+ O��L�2. �3.54�

The curly bracket in this last equation corresponds to the BB
second moment of Eq. �3.51�; the contribution �which starts
with ��L�2� of the third and higher moments is just indicated
in the last line. We also perform on the left-hand side �LHS�
of Eq. �2.9� a Taylor expansion of �F�M��L+�L in powers of
�L around the “initial” value �F�M��L, i.e.,

�F�M��L+�L = �F�M��L +
��F�M��L

�L
�L +

1

2!

�2�F�M��L

�L2 ��L�2

+ ¯ . �3.55�

We then identify the coefficients of the various powers of �L
in �3.54� and �3.55�. In particular, the coefficients of �L give
the diffusion equation, �2.10�, derived in Sec. II, which we
reproduce here:

��F�M��L

�L
= �

ijhl��

abcd��

Dab,cd
ij,hl �k,L�	Mb�

j� Md�
l� �2F�M�

�Ma�
i� �Mc�

h�

L

.

�3.56�

Equating the coefficients of higher powers of �L in Eqs.
�3.54� and �3.55� we obtain results which could be derived
from the diffusion equation �3.56� by successive differentia-
tions. We have verified this statement explicitly for the coef-
ficients of ��L�2 in the specific one-channel case treated in
Sec. IV A below.

The diffusion equation �3.56� governs the evolution with
length of the expectation value of physical observables. The
expectation values appearing in Eq. �3.56� must fulfill, for
L=0, the “initial condition”

�F�M��L=0 = F�I� , �3.57�

obtained by setting M=I in the expression F�M� for the ob-
servable, since for L=0 the scattering system is absent. More
general initial conditions are discussed in Ref. �6�.
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As was indicated earlier, the cumulants of the potential
higher than the second are irrelevant in the end; this signals
the existence of a generalized central-limit theorem �CLT�:
once the MFP’s are specified, the limiting equation �3.56� is
universal, i.e., independent of other details of the micro-
scopic statistics.

Since the structure of the present diffusion equation is
essentially the same as the structure of the one derived in MT
�Ref. �25�, Eq. �3.18��, it is worthwhile, for the sake of com-
parison, to summarize, at this point, the MT model. In MT
the statistical assumptions are made at the level of the indi-
vidual scattering units, just as in the present paper �the same
units that were also contemplated in Ref. �13��; however, the
assumptions are not made for the potentials, but rather for
the corresponding transfer matrices. In MT, the transfer ma-
trix for each scattering unit is close to the unit matrix and is
written as Mr=I+�r, just as in our Eq. �3.13� above; it is
further expressed in terms of independent parameters �in the
Pereyra representation �33��, for which various statistical as-
sumptions are made:

�i� The first moment and some of the second moments of
the independent parameters are chosen so that the resulting
��r�=0 �see Eqs. �3.15� and �3.16� of MT; with this feature,
there is no drift term in the resulting Fokker-Planck equa-
tion�, while the remaining second moments of the indepen-
dent parameters are kept arbitrary.

�ii� The individual scattering units are statistically inde-
pendent and identically distributed.

�iii� The energy does not appear explicitly, but only as the
energy at which the resulting MFP’s have to be evaluated.

�iv� In order to obtain explicit expressions for the diffu-
sion coefficients, in the analysis that follows from Eq. �3.18�
of Ref. �25� a more explicit model was postulated for the
second moments mentioned in �i� above.

In the present paper, assumption �i� is a consequence of
the vanishing of the first moment of the individual potentials,
Eq. �3.21a�, thus giving Eq. �3.23�. Assumption �ii� has to be
contrasted with Eq. �3.24� above, which shows that, here, the
transfer matrices for the individual scattering units are not
identically distributed. As it has already been stressed, in
contrast to assumption �iii� the energy appears now explic-
itly. Finally, the additional assumptions mentioned in �iv�
are, to some extent, arbitrary; they are compared below with
those arising from the short-wavelength approximation of the
present model.

D. The short-wavelength approximation: The regime (3.1b)

In the DWSL the above expressions are exact for all en-
ergies. We now turn to a different regime, to be called the
short-wavelength approximation �SWLA�, defined by the in-
equalities �3.1b�. The regime to be studied is analogous to
the geometrical optics limit studied in optics �34�. Essen-
tially, we shall assume that we can fit many wavelengths
inside a BB, i.e.,

� � �L or k�L � 1, �3.58�

so that in this regime only lengths much larger than the
wavelength actually enter the description.

To this end we go back to Eq. �2.9� which, after setting
��ac

ik �L,�L=0 because of �3.29�, we rewrite here for conve-
nience

�F�M��L+�L,k = �F�M��L,k +
1

2! �
ijhl

abcd

��ab
ij �cd

hl �L,�L;k

��
��

��

	Mb�
j� Md�

l� �2F�M�
�Ma�

i� �Mc�
h�


L,k

+ ¯ .

�3.59�

We have indicated explicitly the k dependence of the various
expectation values. We first analyze below the BB factors
appearing on the RHS of the above equation, and then the
remaining expectation values.

�1� The BB factor ��ab
ij �cd

hl �L,�L;k can be written, from Eq.
�3.31�, as

��ab
ij �cd

hl �L,�L;k = ����1��ab
ij ���1��cd

hl �L,�L;k + ����2��ab
ij ���2��cd

hl �L,�L;k

+ ¯ . �3.60�

The first term on the RHS of this last equation is given by
Eq. �3.50�, and its contribution to �3.59� is given by

1

2 �
ijhl

abcd

����1��ab
ij ���1��cd

hl �L,�L;k�
��

��

��· · ·�ijhl���L,k

=
1

2 �
ijhl

abcd

�K=0�

C�ab,cd�
�lab�k�lcd�k�

�ab,cd
ij,hl �k,�L�eiK�L+�L/2�

��
��

��

��· · ·�abcd��
ijhl�� �L,k +

1

2 �
ijhl

abcd

�K�0�

C�ab,cd�
�lab�k�lcd�k�

��ab,cd
ij,hl �k,�L�eiK�L+�L/2��

��

��

��· · ·�abcd��
ijhl�� �L,k. �3.61�

In this equation, K is an abbreviation for Kab,cd
ij,hl which was

defined in Eq. �3.43�, and �ab,cd
ij,hl �k ,�L� was given in Eq.

�3.42�. We have also used the notation

��· · ·�abcd��
ijhl�� �L,k �	Mb�

j� Md�
l� �2F�M�

�Ma�
i� �Mc�

h�

L,k

, �3.62�

as an abbreviation for the last factor appearing on the RHS of
Eq. �3.59�. In the second line in Eq. �3.61� the sum is over
the combinations of indices that make Kab,cd

ij,hl =0, while in the
third line it is over those combinations that make Kab,cd

ij,hl �0.
The second term on the RHS of Eq. �3.60� is given in Eq.

�C7� and, using a similar convention as in the last equation,
its contribution to Eq. �3.59� can be written as
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1

2 �
ijhl

abcd

����2��ab
ij ���2��cd

hl �L,�L;k�
��

��

��· · ·�abcd��
ijhl�� �L,k

=
1

2 �
ijhl����

abcd����
�K1=K2=0�

C�a��,c���
�la���k�lc���k�

C���b,��d�
�l��b�k�l��d�k�

�a��,��b,c��,��d
i��,��j,h��,��l �k,R��L��ei�K1+K2��L+�L/2��

��

��

��· · ·�abcd��
ijhl�� �L,k

+
1

2� �
ijhl����

abcd����
�K1�0,K2�0�

+ �
ijhl����

abcd����
�K1=0,K2�0�

+ �
ijhl����

abcd����
�K1�0,K2=0�

�
C�a��,c��

�la���k�lc��k�
C���b,��d�

�l��b�k�l��d�k�

��a��,��b,c��,��d
i��,��j,h��,��l �k,R��L��ei�K1+K2��L+�L/2��

��

��

��· · ·�abcd��
ijhl�� �L,k. �3.63�

We recall that K1 and K2 are defined in Eq. �C4�.
Higher-order contributions occurring on the RHS of Eq.

�3.60� can be obtained from the analysis of Appendix D.
We now analyze the consequences of the inequality �3.58�

for the above expressions �3.61� and �3.63�, which so far are
exact. It will be convenient to take the wave number k as

k =
�N + 1/2��

W
, �3.64�

i.e., halfway between the threshold for the last open channel
and that for the first closed one, so that the longitudinal mo-
menta are given by ka=k�1− �a / �N+1/2��2. From Eq. �3.43�
we see that when Kab,cd

ij,hl �0, Kab,cd
ij,hl is proportional to k �the

coefficients only depending on channel indices�, so that
Kab,cd

ij,hl �L�1. As a result we have the following:
�i� In Eq. �3.61� the sum with K=0 gives the largest con-

tribution �proportional to �L, as we now analyze in detail�,
while the sum with K�0, which contains K in the denomi-
nator of �ab,cd

ij,hl �k ,�L�, will be neglected. Let us be more spe-
cific about the combination of indices ab, cd and ij, hl that
give rise to K=0 in Eq. �3.61�. Take, for instance, i= j=h
= l=1. Since ka ,kb ,kc ,kd are incommensurate, Kab,cd

11,11=kb
−ka+kd−kc �see Eq. �3.43�� can only vanish if a=b and c
=d, or a=d and b=c. On the other hand, Kab,cd

12,12=−�ka+kb

+kc+kd� never vanishes. We thus have, for �ab,cd
ij,hl �k ,�L�, de-

fined for arbitrary k and �L in Eq. �3.42�, the approximate
result

�ab,cd
ij,hl �k,�L� � �− 1�i+h+1�K0�L �3.65a�

�here, �K0 is Kronecker’s delta which takes on the value 1
when K=0 and vanishes otherwise� or, more explicitly,

�ab,cd
11,11�k,�L� � −

�ab�cd + �ad�bc

1 + �ac
�L , �3.65b�

�ab,cd
11,22�k,�L� �

�ab�cd + �ac�bd

1 + �ad
�L , �3.65c�

�ab,cd
12,21�k,�L� �

�ac�bd + �ad�bc

1 + �ab
�L , �3.65d�

�ab,cd
11,12�k,�L� � �ab,cd

11,21�k,�L� � �ab,cd
12,12�k,�L� � 0.

�3.65e�

We can thus write ����1��ab
ij ���1��cd

hl ��L in the DWSL, followed
by the SWLA, as

lim
DWS

����1��ab
ij ���1��cd

kl ��L �
C�ab,cd�

�lab�k�lcd�k�
�− 1�i+h+1�K0�L .

�3.66a�

One finds explicitly in the various cases �C�a ,c� being an
abbreviation for C�aa ,cc��:

lim
DWS

����1��ab
11���1��cd

11��L

� −
1

1 + �ac
�C�a,c�

�L
�laa�k�lcc�k�

�ab�cd +
�L

lab
�ad�bc
 ,

�3.66b�

lim
DWS

����1��ab
11���1��cd

22��L

�
1

1 + �ad
�C�a,c�

�L
�laa�k�lcc�k�

�ab�cd +
�L

lab
�ac�bd
 ,

�3.66c�

lim
DWS

����1��ab
12���1��cd

21��L �
�ac�bd + �ad�bc

1 + �ab

�L

lab�k�
,

�3.66d�
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lim
DWS

����1��ab
11���1��cd

12��L � lim
DWS

����1��ab
11���1��cd

21��L

� lim
DWS

����1��ab
12���1��cd

12��L � 0.

�3.66e�

Other combinations can be found from TRI, Eqs. �A7�. The
result is that in the DWSL, followed by the SWLA, the
second-order contribution to a second moment of � for the
BB is either negligible or behaves as �L / l, l denoting a typi-
cal MFP.

One can write Eqs. �3.66� as

lim
DWS

����1��ab
ij ���1��cd

kl ��L � 2D̃ab,cd
ij,hl �k��L , �3.67�

where we have defined the diffusion coefficients in the
SWLA as

D̃ab,cd
ij,hl = �− 1�i+h+1 C�ab,cd�

2�lab�k�lcd�k�
�K0 �3.68�

which, from Eq. �3.66�, take the explicit form

D̃ab,cd
11,11�k� = −

1

1 + �ac
� C�a,c�

2�laa�k�lcc�k�
�ab�cd +

1

2lab
�ad�bc
 ,

�3.69a�

D̃ab,cd
11,22�k� =

1

1 + �ad
� C�a,c�

2�laa�k�lcc�k�
�ab�cd +

1

2lab
�ac�bd
 ,

�3.69b�

D̃ab,cd
12,21�k� =

�ac�bd + �ad�bc

1 + �ab

1

2lab�k�
, �3.69c�

D̃ab,cd
11,12�k� = D̃ab,cd

11,21�k� = D̃ab,cd
12,12�k� = 0. �3.69d�

These diffusion coefficients depend on the energy through
the MFP’s only.

�ii� Equation �C3� shows that in the DWSL, followed by
the SWLA, the fourth-order contribution �C2� to a second
moment of � for the BB is either negligible or behaves as
��L / l�2, l denoting a typical MFP. Thus in Eq. �3.63� we
keep only the sum for K1=K2=0 and neglect the other sum-
mations, the result being thus proportional to ��L / l�2.

We finally obtain, for the BB second moments of Eq.
�3.60� in the SWLA �see also Eqs. �3.68� and �C8��:

lim
DWS

��ab
ij �cd

hl �L,�L;k � 2D̃ab,cd
ij,hl �k��L

+ 2 �
����,����

D̃a��,c��
i��,h�� �k�D̃��b,��d

��j,��l �k���L�2

+ O��L�3. �3.70�

�2� Similar arguments applied to the analysis of Appendix
D lead to the result that a �2t�-th moment of � for the BB can
either be neglected because it contains ka’s in the denomina-

tor, or it gives a contribution to Eq. �3.59� which is porpor-
tional to ��L / l�t, whereas a �2t+1�-th moment contributes as
��L / l�t+1.

�3� We need some knowledge about the behavior of the
averages �¯�L,k appearing in Eq. �3.59� in the SWLA. We
shall assume that, for large enough k, we can approximate

�¯�L,k � �¯�L
�0�, �3.71�

where the RHS represents a function smooth to all scales of
L and whose energy dependence only appears through the
MFP’s lab�k�. This ansatz, which seems merely reasonable at
this point, is verified in a particular case in Sec. IV A below.
In the analysis that follows we shall assume that the energy
is kept fixed, so that the MFP’s will be taken as fixed param-
eters and will be written as lab. Likewise, we shall write

D̃ab,cd
ij,hl for the diffusion coefficients.
We now make use of Eq. �3.70� and the result �2� above,

as well as the assumption �3.71�, to write Eq. �3.59� in the
SWLA as

�F�M��L+�L
�0� � �F�M��L

�0� + �
ijhl,��

abcd,��

�D̃ab,cd
ij,hl �L

+ �
����,����

D̃a��,c��
i��,h�� D̃��b,��d

��j,��l ��L�2

� 	Mb�

j� Md�
l� �2F�M�

�Ma�
i� �Mc�

h�

L

�0�

+ O��L�2.

�3.72�

The square bracket in this last equation corresponds to the
BB second moment appearing in Eq. �3.59�; the contribution
of the third and higher moments is just indicated in the last
line, in accordance with �2� above.

We now assume that the quantity �F�M��L+�L
�0� appearing

on the LHS of Eq. �3.72� can be expanded in a Taylor series
around the value L, and that �L is smaller than the radius of
convergence R of the expansion, i.e., ���L�R, so that

�F�M��L+�L
�0� = �F�M��L

�0� +
��F�M��L

�0�

�L
�L

+
1

2!

�2�F�M��L
�0�

�L2 ��L�2 + ¯ . �3.73�

Comparing the coefficients of �L in Eqs. �3.72� and �3.73�
we finally find

��F�M��L
�0�

�L
= �

ijhl��

abcd��

D̃ab,cd
ij,hl 	Mb�

j� Md�
l� �2F�M�

�Ma�
i� Mc�

h�

L

�0�

.

�3.74�

In the SWLA we have thus ended up with an evolution equa-
tion for the “smooth� quantities defined in Eq. �3.71�.

We need to fix the initial conditions appropriate to Eq.
�3.74�. If we require Eq. �3.57� for the exact expectation
values, i.e., �F�M��L=0,k=F�I�, and F�I� is k independent,
then Eq. �3.71� implies

STATISTICAL SCATTERING OF WAVES IN DISORDERED… PHYSICAL REVIEW E 75, 031113 �2007�

031113-13



�F�M��L=0
�0� = F�I� . �3.75�

More detailed assumptions than Eq. �3.71� on the struc-
ture of the expectation value �¯�L,k appearing in Eq. �3.59�
in the SWLA are presented in Appendix F of Ref. �29� for
the one-channel case, N=1. There, a rederivation of Eq.
�3.74� using such assumptions is also discussed.

The derivations given above of both diffusion equations
�3.56� valid for arbitrary energies, and Eq. �3.74�, valid in the
SWLA, use, as a starting point, Eq. �3.59� which describes
the result of adding a BB to an already existing waveguide of
length L. This is also the starting point of the derivation
given in Appendix F of Ref. �29�. We believe that it would be
very instructive to rederive the diffusion equation in the
SWLA, Eq. �3.74�, starting directly from the more general
one, Eq. �3.56�, since such a derivation would shed more
light on the nature of the various approximations involved.
However, we have succeeded in fulfilling this goal only in
the one-channel case N=1; the derivation is presented in
Appendix F of Ref. �29�.

IV. APPLICATIONS OF THE DIFFUSION EQUATION

A. Analytic examples

In this section we study a simple example in which the
diffusion equation �3.56� can be solved exactly. We restrict
the analysis to a one-channel geometry �N=1� and consider,
as examples of the observable F�M�, the quantities

M11M22 = ��* =
1

tt* �
1

T
, �4.1a�

M11M12 = �� = − � r

t2�*

, �4.1b�

where we have used Eq. �A5� to establish the connection
with reflection and transmission amplitudes. We shall give
only the main results of the calculation, some of the details
being presented in Appendix E.

For the one-channel case, the diffusion equation �3.56�
can be written as

��F�M��L

�L
= �

ijhl��

Dij,hl�k,L�	Mj�Ml� �2F�M�
�Mi��Mh�


L
,

�4.2�

where the diffusion coefficient Dij,hl�k ,L� is given explicitly
in Eq. �E1�. For simplicity, we have suppressed all channel
indices, which would take the value 1. We emphasize that in
the DWSL this equation is exact, in the sense that it is valid
for all energies.

The MFP is energy dependent. However, in the present
calculation we keep the energy fixed and so the MFP is taken
as a fixed parameter and will be written as l. One can write
all the evolution equations in terms of the ratio of the length
L to the MFP l

s = L/l , �4.3�

and essentially the ratio of the MFP to the wavelength �

x0 = 2kl . �4.4�

Using the diffusion coefficients of Eq. �E1� one finds the pair
of coupled equations

����*�s

�s
= ����se

ix0s + �2���*�s − 1� + ��*�*�se
−ix0s,

�4.5a�

�����s

�s
= − ����s − �2���*�s − 1�e−ix0s − ��*�*�se

−2ix0s,

�4.5b�

which have to be solved with the initial conditions at s=0:

���*�s=0 = 1, �4.6a�

����s=0 = 0. �4.6b�

The second derivatives of the observable F�M� appearing on
the RHS of the diffusion equation �4.2� produce, in general,
quantities which are different from the observable F�M� it-
self, whose average we wish to study. One then needs to
compute the evolution of these other quantities and this, in
turn, generates still new ones. In the example considered
here, Eq. �4.5� shows that the evolution of ���*� involves
���*� and ����, and similarly for the evolution of ����: we
thus find a pair of coupled equations which “close,” in the
sense that the quantities occurring on the RHS are the same
as on the LHS.

The evolution equations �4.5� for the real quantity ���*�s

and the complex quantity ����s can be written as the triplet
of coupled equations �E2�, which can be solved using the
method of Laplace transforms, with the initial conditions
�4.6�, with the result

���*�s =
1

2
+

1

2
� p1

2 + 2p1 + x0
2

�p1 − p2��p1 − p3�
ep1s

+
p2

2 + 2p2 + x0
2

�p2 − p1��p2 − p3�
ep2s +

p3
2 + 2p3 + x0

2

�p3 − p1��p3 − p2�
ep3s
 ,

�4.7a�

����s = − � p1 + ix0

�p1 − p2��p1 − p3�
e�p1−ix0�s

+
p2 + ix0

�p2 − p1��p2 − p3�
e�p2−ix0�s

+
p3 + ix0

�p3 − p1��p3 − p2�
e�p3−ix0�s
 . �4.7b�

In this equation, p1, p2, and p3 are the roots of the third
degree polynomial P�p�= p3+x0

2p−2x0
2, with p1�R, p2 , p3�C

and p3= p2
*.

The solutions �4.7� are exact, being valid for arbitrary
length L, MFP l, and wavenumber k. Moreover, as shown
below, the solutions of the diffusion equation are in full
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quantitative agreement with the statistical averages obtained
from numerical solutions of the one-dimensional wave equa-
tion.

A one-dimensional version of the delta-slice model dis-
cussed in Sec. III B 1 is sketched in the inset of Fig. 3. No-
tice that in a 1D problem there are no evanescent modes.

The system of length L is constructed from “delta po-
tentials” Ur�x�=ur��x−xr� �recall that Ur�x� and ur have di-
mensions of k2 and k, respectively�, located at the positions

xr=rd �r=0,1 ,2 . . . �; ur is assumed to be uniformly distrib-
uted over the interval �−umax, +umax�. The mean free path,
obtained from Eq. �3.36�, is simply given by

d

l
=

1

3
�umax

2k
�2

. �4.8�

The results of the numerical calculations for ���*� and ����
versus L are shown in Figs. 3 and 4, respectively. Averages
were obtained from 107 different microscopic realizations.
Numerical results are indistinguishable from the analytical
solution of the diffusion equation �Eqs. �4.7a� and �4.7b��.

It will be interesting to see what these results reduce to in
the SWLA discussed in Sec. III D above. In preparation for
this, we first consider a fixed value of s=L / l and take x0
=2kl�1. From Eq. �E8� one can expand the functions
���*�s, ����s in powers of 1 /x0; in terms of the original
variables k, l, and L they take the form

���*�s =
1

2
�1 + e2�L/l�� +

2

�2kl�2�− �1 + 2
L

l
�e2�L/l�

+ e−L/l e
2ikL + e−2ikL

2

 + O� 1

kl
�3

, �4.9a�

����s =
i

2kl
�e−L/l − e2�L/l�e−2ikL� +

2

�2kl�2�5 − 3
L

l

4
e−L/l

− �e2�L/l�e−2ikL +
1

4
e−L/le−4ikL�� + O� 1

kl
�3

.

�4.9b�

The solutions �4.9� satisfy the differential equations �4.5� to-
gether with the initial conditions �4.6� to every order in the
expansion in powers of 1 /2kl.

Notice that the ansatz made in Eq. �3.71� is verified ex-
plicitly in this example, with the result

���*�s
�0� =

1

2
�1 + e2�L/l�� , �4.10a�

����s
�0� = 0, �4.10b�

which represents, in this particular case, the SWLA dis-
cussed in Sec. III D. The result �4.10a� agrees with what had
been obtained earlier as a solution of the diffusion equation
of Ref. �16� for N=1, also known as Melnikov’s equation.
Notice that

���*�s
�0� = ���*�s

�0� − 1 = 	R

T



s

�0�

=
1

2
�e2�L/l� − 1�

�4.11�

represents the well known exponential increase of Landau-
er’s resistance �35�.

If, in Eq. �4.9�, we further expand the exponentials e2L/l,
e−L/l, in powers of 1 / l, we end up with an expansion of
���*�s, ����s in powers of 1 / l. The result found in Eq.

FIG. 3. �Color online� �M11M22�= ���*� versus kL. Numerical
results �circles� from the one-dimensional model sketched in the
inset are indistinguishable from the analytical results �bold line�,
Eq. �4.7a�. The results correspond to x0=2kl=200 and d / l=10−3.

FIG. 4. �Color online� Real �top� and imaginary �bottom� parts
of �M11M12�= ���� as a function of kL. Numerical results �circles�
are indistinguishable from the analytical results �bold line�. The
parameters are the same as in Fig. 3.
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�3.50�, setting L=0 and interpreting �L as L, is precisely the
term proportional to 1/ l in such an expansion; we have veri-
fied the consistency of the two results up to O�1/ l�.

B. Random walk in the transfer matrix space:
Numerical simulations

As we have shown, the diffusion equation �3.56� deter-
mines the statistical properties of transport for any physical
observable and it only depends on the mean free paths lab.
Once the various lab are specified, the statistical distributions
are universal, i.e., independent of other details of the micro-
scopic statistics. However, in order to know the exact shape
of the distribution of a given observable we have to solve the
diffusion equation. This is a challenging problem even in the
isotropic case �16� �where all the MFP’s are equivalent, lab
= l�. Here, instead of a direct solution of the multidimen-
sional diffusion equation we have followed an alternative
way that can be seen as a generalization of a random walk in
the transfer matrix space �Ref. �36��. The method, based on
our previous theoretical description, can be summarized as
follows.

�1� We first obtain a set of mean free paths from a given
microscopic potential model for the building block or, even-
tually, from specific experiments on very thin slabs.

�2� We generate an ensemble of transfer matrices having
their first and second moments equal to those corresponding
to a BB of a certain length �L.

�3� The transfer matrix for a system of length L= P�L is
obtained by combining P building-block matrices randomly
chosen from the ensemble. This procedure can be repeated
again and again in order to obtain the statistical distribution
of any physical quantity. As predicted by the CLT associated
with the composition of BB’s explained in Appendix G of
Ref. �29�, higher order moments of the BB matrix elements
play no role in the final statistics.

The statistical distributions of different physical quantities
will be shown to be in full agreement with the results of
exact microscopic numerical calculations for a model sys-
tem. This shows that validity of the diffusion equation given
in Eq. �3.56� goes beyond the various formal limits discussed
in Sec. III.

1. Microscopic potential model and mean free paths

Let us consider the potential model sketched in Fig. 5. In
this model, a 2D waveguide with perfectly reflecting walls
has a region of length L which is divided into small “cells”
of dimensions �x��y. The working wavelength is chosen to

be such that �x ,�y��. In the language of Sec. III A, the
potential in the rth slice, Eq. �3.9�, is replaced here, for finite
�x, by

Ur�x,y� = ur�y�
��x�x − xr�

�x
, �4.12�

where ��x�x−xr� takes the value 1 inside the interval �xr

−�x /2 ,xr+�x /2� and 0 outside. Should �x tend to zero, the
expression in Eq. �4.12� would tend to that of Eq. �3.9a�.
Inside the rth slice, the potential is taken to be constant
within each cell, i.e.,

ur�y� = �
s

us��y�y − yr� , �4.13�

so that

Ur�x,y� = �
s

Us��x�x − xr���y�y − yr� , �4.14�

with Us=us /�x. The constant values Us of the potential in-
side each cell located in the region W−�W�y�W is
sampled from a uniform distribution within the interval
�−U0 ,U0�. Outside the region defined by W−�W�y�W,
the potential is taken to be zero.

In order to get the mfp’s corresponding to our model sys-
tem, we follow the same steps leading to Eq. �3.36� in Sec.
III above. In the limit �x ,�y��W, and neglecting the cou-
pling to evanescent modes, i.e., using the “bare” potential u
instead of the “effective” one û �see text following Eq. �3.16�
and Appendix B�, we obtain

1

lab
=

��vab�2�
�x

=
U0

2

3

�x�y

4kakb
�

W−�W

W

�a
2�y��b

2�y�dy , �4.15�

where �a�y� are the transverse eigenfunctions of the clean
waveguide �Eq. �3.3��. The MFP’s for bulk disordered sys-
tems, i.e., when the disordered potential covers the whole
section of the waveguide ��W=W� are simply given by

� 1

lab
�

bulk
=

U0
2

3

�x�y

4kakb

2 + �ab

2W
. �4.16�

In order to analyze a surface disordered waveguide, we shall
also consider the limit �W�W,

� 1

lab
�

surface
=

U0
2

3

�x�y

4kakb
�4�4

W2 a2b2�W� . �4.17�

2. Random transfer matrices for a building block

In order to generate an ensemble of random transfer ma-
trices whose first and second moments are given, it is useful
to describe the transfer matrix elements of the BB as a func-
tion of the 2N2+N independent parameters of the Pereyra
representation �see Ref. �33��. The matrix � of Eq. �3.25d�
can be expressed �in that representation� as

�11 = eih�1 + 

* − 1, �4.18a�

FIG. 5. Schematic representation of the microscopic model
based on random potentials. Each square of the plot, or “cell,”
represents a region of constant random potential.
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�12 = eih
 , �4.18b�

where h is an arbitrary N�N Hermitian matrix �thus contrib-
uting N2 parameters� and 
 is an arbitrary N�N complex
symmetric matrix �thus contributing N2+N parameters�.

Applying successive approximations to Eqs. �4.18� it is
possible to invert them to express the matrices h and 
 as
functions of the blocks �ij, i.e.,

h = − i�11 +
i

2
��12�21 + �11�11� + O��3� , �4.19a�


 = �12 − �11�12 + O��3� . �4.19b�

The aim is to derive the statistical properties of the matri-
ces h and 
 in terms of those of the blocks �ij which we
derived in the previous section; we shall do this in the
SWLA �see Sec. III D�. We can use Eqs. �4.19�, �3.69�, and
�3.70� to obtain �in powers of �L� the first and second mo-
ments of the matrix elements 
ab, hab. For the first moments
we obtain

�hab��L = O��L�2, �4.20a�

�
ab��L = O��L�2, �4.20b�

and for the second moments

�habhcd��L = − ��ab
11�cd

11��L + ¯ =
�L

1 + �ac
��ab�cd

C�aa,cc�
�laalcc

+
�ad�bc

lab

 + O��L�2, �4.21a�

�habhcd
* ��L = − ��ab

11�cd
22��L + ¯ =

�L

1 + �ad
��ab�cd

C�aa,cc�
�laalcc

+
�ac�bd

lab

 + O��L�2, �4.21b�

�hab
cd��L = − i��ab
11�cd

12��L + ¯ = O��L�2, �4.21c�

�hab
cd
* ��L = − i��ab

11�cd
21��L + ¯ = O��L�2, �4.21d�

�
ab
cd��L = ��ab
12�cd

12��L + ¯ = O��L�2, �4.21e�

�
ab
cd
* ��L = ��ab

12�cd
21��L + ¯ =

�ac�bd + �ad�bc

1 + �ab

�L

lab
+ O��L�2.

�4.21f�

To generate the ensemble of random transfer matrices for

 and h in the SWLA, we need to know the statistical prop-
erties of the real and imaginary parts of the matrix elements

ab and hab, to be denoted as


ab
R � Re 
ab =

1

2
�
ab + 
ab

* �,


ab
I � Im 
ab =

1

2i
�
ab − 
ab

* � , �4.22a�

hab
R � Re hab =

1

2
�hab + hab

* �, hab
I � Im hab =

1

2i
�hab − hab

* � .

�4.22b�

Using Eqs. �4.20� and �4.21� we find

��
ab
R �2��L = ��
ab

I �2��L =
�L

2lab
+ O��L�2, ∀ a,b ,

�4.23a�

��hab
R �2��L = ��hab

I �2��L =
�L

2lab
+ O��L�2, a � b ,

�4.23b�

��haa�2��L =
�L

laa
+ O��L�2, �4.23c�

�haahbb��L =
C�aa,bb�
�laalbb

�L + O��L�2, �4.23d�

�hab
R hcd

R ��L = �hab
I hcd

I ��L = �hab
R hcd

I ��L = O��L�2,

a � b � c � d , �4.23e�

�hab
R had

R ��L = �hab
I had

I ��L = �hab
R had

I ��L = O��L�2, a � b � d ,

�4.23f�

�hab
R 
cd

R ��L = �hab
I 
cd

I ��L = �hab
R 
cd

I ��L = �hab
I 
cd

R ��L = O��L�2,

�4.23g�

�
ab
R 
cd

I ��L = �hab
R hcd

I ��L = O��L�2, �4.23h�

�
ab
R 
cd

R ��L = �
ab
I 
cd

I ��L = O��L�2, a � c,b � d ,

�4.23i�

�
ab
R 
ad

R ��L = �
ab
I 
ad

I ��L = �
ab
R 
ad

I ��L = O��L�2, a � b � d .

�4.23j�

We recall that the diagonal elements haa are real since h is a
Hermitian matrix.

From now on, to generate the ensemble we shall consider
a potential which is delta correlated in the transverse direc-
tion; in that case we have

C�aa,bb�
�laalbb

=
1

lab
, �4.24�

which allows rewriting Eqs. �4.23c� and �4.23d� as one equa-
tion:

�haahbb��L =
�L

lab
+ O��L�2. �4.25�

Therefore, in the SWLA, real and imaginary parts of the
matrix elements of 
 and off-diagonal matrix elements of h
are, to order �L, uncorrelated, with zero mean, Eq. �4.20�,
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and with variance �L /2lab, Eqs. �4.23a� and �4.23b�. For
these elements we have used two different distributions giv-
ing the same variances:

P1�x� =
1

4�3�
���x + �3�� − ��x − �3��� , �4.26a�

P2�x� =
1

2
��x − �� +

1

2
��x + �� , �4.26b�

��x� being the usual step function and �2=var�x�. As we can
see from the CLT of Appendix G of Ref. �29�, the final
results only depend on the coefficients proportional to �L,
while the rest of the details of the distributions do not play
any role.

In contrast, the diagonal elements of the h matrices are
correlated, Eq. �4.25�. In order to generate numerically a set
of uncorrelated variables from the diagonal elements of the h
matrices we have performed an orthogonal transformation on
the diagonal terms haa,

haa� = �
b

Oabhbb, �4.27�

in such a way that the covariance matrix Cab��haahbb�
=�L / lab is diagonalized, to obtain

�haa� hbb� � = �ab�a
2. �4.28�

Hence we can numerically generate a set of N uncorrelated
variables haa� with zero mean and a variance given by the
eigenvalues of the Cab=�L / lab matrix and, after that, obtain,
by the change of coordinates �4.27�, the haa variables which
are properly correlated.

3. Random walk in the transfer-matrix space:
Statistical conductance distributions

Once we have numerically generated an ensemble of
transfer matrices with its first and second moments correct
up to order �L, we can obtain a transfer matrix correspond-
ing to a system of length L= P�L by multiplying P transfer
matrices of the ensemble of BB’s taken at random. Numeri-
cally this procedure is unstable because the pseudounitary
group, to which the transfer matrices belong, is noncompact
�10�. This property leads to numerical instabilities as the
norm of the transfer matrix elements can grow without limit.
Instead of using the product of transfer matrices, we obtain
the scattering matrix associated with each transfer matrix
�Eqs. �A5��, and then combine different scattering matrices
to obtain the scattering matrix for the system of length L
�Eqs. �A16� of Ref. �29��.

For a given set of mean free paths lab we choose the
length �L of the BB in such a way that �L / lab�1 for all
channels. With this, we generate random transfer matrices as
explained above and, for each one, we obtain the correspond-
ing scattering matrix. Applying P times the Eqs. �A16� of
Ref. �29� we obtain the scattering matrix corresponding
to a system of length L= P�L. This procedure can be re-
peated as many times as needed to obtain the desired statis-
tical properties.

A detailed numerical analysis of the statistical properties
is beyond the scope of the present work and will be dis-
cussed elsewhere. Here we just focus on the statistical distri-
bution of the conductance and the intriguing discrepancies
between surface and bulk disordered systems �23,24�.

a. Bulk disorder. The behavior of the average transmit-
tances �Tii� �channel in=channel out�, for bulk disordered
wires, is plotted in Fig. 6 as a function of L / l, l being the
averaged transport mean free path

1

l
�

1

N
�
ab

1

lab
. �4.29�

The inset shows the equivalent results for �Tij� with i� j.
The random-walk simulation was performed in the SWLA.
We have also solved numerically the Schrödinger equation
for the same model system �sketched in Fig. 5�. We followed
an implementation of the so-called generalized scattering
matrix �GSM� method �see, for example, Ref. �30��. The first
step consists in the calculation of the set of transverse eigen-
functions and the scattering matrix for each slice of length
�x. The combination of two consecutive slices is done by
mode matching at the interface. After that we combine scat-
tering matrices to obtain the scattering matrix of the whole
system. It is important to mention that this calculation is
performed using both propagating and evanescent modes and
hence, this method can be considered as exact. The statistical
properties of any transport parameter obtained from 105 dif-
ferent realizations were found to converge for three evanes-
cent modes. The calculations have been done starting from
the set of mean free paths lab given by Eq. �4.16� for kW
=5.5� �corresponding to five propagating modes�, U0W2

=100 and �x /W=�y /W=1/50. The exact numerical results

FIG. 6. �Color online� Bulk disordered waveguides. Average
transmittances �Tii� �channel in=channel out�, as a function of L / l.
The inset shows the equivalent results for �Tij� with i� j for a
representative set of indices. The results based on the numerical
solution of the Schrödinger equation �microscopic calculation; sym-
bols� and the random walk simulation of the diffusion equation
�bold line� in the SWLA overlap.
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for the average transmission coefficients are indistinguish-
able from the random-walk simulations.

The random-walk results for the average reflection coef-
ficients �Rij� for bulk disorder �shown in Fig. 7� are also
in good agreement with our numerical results as well as
with previous numerical work �37� �using a two-dimensional
tight-binding model with Anderson disorder�. The set of
reflection coefficients corresponding to backscattering
��Rii�� are consistent with an enhanced backscattering
factor �Rii� / �Rij��2, as expected from the DMPK
equation.

The distribution of the dimensionless conductance, P�g�
�with g=tr�tt†��, for bulk disordered wires is plotted in Fig. 8
for different conductance averages �g�. The inset shows the
average conductance as a function of L / l.

The exact numerical results for the conductance distribu-
tion �histogram lines in Fig. 8� are indistinguishable from the
random walk simulations �open circles�. For comparison we
also plot �continuous line� the exact result of the diffusion
equation of Ref. �16� �DMPK equation� obtained from a
Monte Carlo simulation �23�. Despite the slight channel an-
isotropy of transport, the results are compatible with those of
the DMPK equation.

b. Surface disorder. In the case of surface disorder, the
mean free paths are very different from those obtained for a
uniform �bulk� distribution of scatterers. In particular, the
dependence of lab on a2b2 �see Eq. �4.17�� reflects the strong
channel anisotropy of transport in surface disordered

waveguides �11,38–42�. This could be the origin of the dif-
ferences between bulk and surface distributions. Previous
numerical calculations for surface disordered waveguides,
showed that close to the onset of localization, the conduc-
tance distributions presented an unexpected sharp cusplike
shape �24�. The distribution of the dimensionless conduc-
tance for surface disordered wires obtained from the random
walk simulation in the SWLA is plotted in Fig. 9 �open
circles� for different conductance averages. The exact solu-
tion of the Schrödinger equation �microscopic calculation;
histograms� is again in full agreement with the diffusion
equation and with previous numerical work �11,24�. The cal-
culations have been done starting from the set of mean free
paths lab given by Eq. �4.17� for �W=0.1W, U0=100/W2,
kW=5.5� �N=5�, �x=10�y=W /50.

It is worth noticing that when the disordered region is
confined close to the surface, the mean free paths can be
extremely large �for example, for the present calculation, l
�1.50�104W�. The exact numerical solution of the wave
equation is then extremely expensive in terms of computa-
tion time compared to the random walk simulations based on
the statistical properties of the BB.

FIG. 7. �Color online� Bulk disordered waveguides. Average
reflectance �Rij� as a function of L / l. The upper curves correspond
to i= j �open symbols� and the lower curves to i� j �filled symbols�
for a representative set of indices. The results based on the numeri-
cal solution of the Schrödinger equation �microscopic calculation�
and the random walk simulation of the diffusion equation �bold
line� in the SWLA overlap.

FIG. 8. �Color online� Bulk disordered waveguides. Distribution
of the dimensionless conductance P�g� for different conductance
averages �g�. The three different curves based on different ap-
proaches overlap. Circles correspond to the random walk simulation
of the diffusion equation in the SWLA. The continuous line repre-
sents the results of the Monte Carlo simulation of Ref. �23�. The
histogram lines are the results based on the numerical solution of
the Schrödinger equation �microscopic calculation�. The inset
shows the average conductance as a function of L / l.

FIG. 9. �Color online� Surface disordered
waveguides. Distribution of the dimensionless
conductance P�g� for different conductance aver-
ages �g�. Circles correspond to the random walk
simulation of the diffusion equation in the
SWLA. The histogram lines are the results based
on the numerical solution of the Schrödinger
equation �microscopic calculation�. The equiva-
lent results for bulk disorder �continuous line,
DMPK� are also shown for comparison.
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Although the random walk in the SWLA accurately repro-
duces the exact conductance distributions, it is not in full
agreement with the statistical properties of the different
transmittances. As an example, Fig. 10 shows the behavior of
�Ta�=�b�Tba� versus L / l for both the exact numerical results
�continuous lines� and the random walk �dashed lines�. The
disagreement could be associated to the use of an approxi-
mate expression �4.17� for the mean free paths. For small
lengths compared to the mean free paths, the average reflec-
tance is given by �see also Eq. �3.34��

�Rab� =
L

lab
+ ¯ . �4.30�

We could then have obtained the different mean free paths lab

for all modes by performing a linear fitting of the numerical
results to Eq. �4.30�. However, as long as the energy is not
very close to the onset of new propagating channels, we
found that the numerical MFP’s are well described by Eqs.
�4.16� and �4.17� within the numerical accuracy. The discrep-
ancy could then be associated to the limitations of the
SWLA. The generalization of the random walk method be-
yond the SWLA is in progress.

In summary, we have implemented a numerical method to
obtain the statistical properties of the transport coefficients
using the diffusion equation derived in this work. We have
extensive numerical evidence of the suitability of our model
to describe the statistics of wave transport in disordered
waveguides. It is worth noticing that our model exactly re-
produces the conductance distributions obtained from the mi-
croscopic model even though this one contains as many eva-
nescent modes as needed to perform the calculation in an
exact manner. The only parameters needed to obtain the sta-
tistics of any transport coefficient are the mean free paths lab,

as it is implied by the diffusion equation, all the statistical
properties being fixed at any length once all lab parameters
are fixed.

V. CONCLUSIONS AND DISCUSSION

The central result of the present paper is the Fokker-
Planck equation, �2.10�, which describes the evolution with
the length L of a disordered waveguide of transport proper-
ties which can be expressed in terms of the transfer matrix M
of the system. Our starting point is a potential model in
which the scattering units consist of thin potential slices
�taken as delta slices for convenience� perpendicular to the
longitudinal direction of the waveguide, the variation of the
potential in the transverse direction being arbitrary. A statis-
tical law for the potential slices is specified, as detailed in
Sec. III B 1: in particular, the parameters of a given slice are
taken to be statistically independent from those of any other
slice, so that we are dealing here with the situation of uncor-
related �at least in the longitudinal direction� disorder. Our
result is obtained in the so called dense-weak-scattering
limit, denoted by DWSL in the text, in which each potential
slice is very weak and the linear density of slices is very
large, so that the resulting mean free paths �MFP’s� are fixed
�see Eq. �3.39��. The statistical properties of a building block
�denoted by BB� of length �L, say, are first derived; the BB
is then added to a waveguide of length L to obtain a compo-
sition law, from which the diffusion equation is eventually
derived. In the DWSL, the statistical properties of the BB,
and hence of the full system, depend only on the MFP’s
which, in turn, depend only on the second moments of the
individual delta-potential strengths. Cumulants of the poten-
tial higher than the second are irrelevant in the limit, signal-
ling the existence of a generalized central-limit theorem
�CLT�: once the MFP’s are specified, the limiting equation
�2.10� is universal, i.e., independent of other details of the
microscopic statistics. One important characteristic of the
present analysis, compared with previous ones, is that the
energy of the incident particle is fully taken into account, a
consequence being that the generalized diffusion coefficients
appearing in the diffusion equation �2.10� depend on the
wavenumber k of the incident wave and on the length L.

The diffusion equation �2.10� for expectation values is
very difficult to solve, the main reason being explained in the
text, right below Eq. �4.6�. The original DMPK equation �16�
for the probability distribution of certain parameters of the
transfer matrix was solved exactly for the unitary symmetry
class only �43�, whereas for the evolution of expectation val-
ues arising from that same equation for a large number of
open channels N�1, an iterative procedure was developed to
find the result as an expansion in powers of 1 /N �10�. In the
present case, in Sec. IV A we have been able to solve Eq.
�2.10� exactly for N=1, but only for a few particular observ-
ables: the solution is in excellent agreement with the results
of a microscopic calculation. However, not even for N�1
have we been able to develop an analytic iterative procedure
like the one we mentioned above; even numerically we have
not succeeded in developing a method to solve Eq. �2.10�.
We have thus tackled the problem of extracting information

FIG. 10. �Color online� Surface disordered waveguides. Average
transmittances �Ta� as a function of L / l. The agreement between
results based on the numerical solution of the Schrödinger equation
�microscopic calculation; continuous lines� and the random walk
simulation of the diffusion equation in the SWLA �dashed lines� is
not as good as for the conductance distributions.
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from the analysis of the present paper from a different point
of view, based on the study of the BB itself, which was
shown to have universal statistical properties. First, we
should remark that the BB is useful not only as an interme-
diate step to obtain the diffusion equation; it is interesting as
a physical system in itself, i.e., a slab. In the paper we ob-
tained its statistical properties up to order �L only, with some
extension to order ��L�2. In principle, although it represents a
tedious task, the procedure could be carried on to at least a
few more powers of �L. A similar expansion was performed
in an earlier publication �25�. Second, the BB was used in
Sec. IV B to develop the method that we called “random
walk in the transfer matrix space,” which was essential for
the numerical analysis based on the results of the present
work. The results reported in that section showed excellent
agreement with the corresponding microscopic calculations.
Efforts towards an analytical and/or numerical treatment of
the diffusion equation �2.10� itself would be very important.

In Sec. III D we develop the short-wavelength approxima-
tion, denoted as SWLA in the text, which bears resemblance
to the geometrical optics limit studied in optics. The results
of this approximation allow us to make a connection with
some of our previous work, in which the energy did not
appear explicitly in the analysis. We should remark that the
numerical results of the random walk in the transfer matrix
space reported in Sec. IV B were performed within this ap-
proximation.

In the analysis presented in this paper, the presence of
evanescent modes for a single slice appears in the effective
potential �ûr�ab that occurs in Eq. �3.16� and is used to con-
struct the open-channel transfer matrix; the effective poten-
tial takes into account transitions to evanescent modes. Our
statistical law is thus postulated for the matrix elements of
the effective potential. However, as we mentioned in Sec. II
around Eq. �2.2� and in Sec. IV B 3, the transfer matrix for a
sequence of scatterers was constructed multiplying open-
channel transfer matrices, i.e., ignoring the presence of eva-
nescent modes in the combination law. Nonetheless, the final
agreement with microscopic calculations is very good. An
important question for future investigation is thus to under-
stand the effect of evanescent modes when combining sub-
systems to form the whole waveguide.

In the potential model developed here the property of
time-reversal invariance is satisfied and the treatment is also
restricted to scalar waves. In the language of random-matrix
theory, we are dealing with the orthogonal symmetry class,
or �=1. For possible applications to electronic systems, it
would be interesting to extend the analysis to the unitary and
symplectic cases, �=2 and �=4, respectively.

As explained in the Introduction, in earlier publications
�such as Refs. �10,16�� the notion of maximum entropy in
conjunction with a number of physical constraints played an
important role in selecting the distribution of the BB: in a
way, that selection captured the features arising from a CLT.
We think that it would be very interesting to investigate the
question whether the results presented here can be obtained
within such a framework. Finally, since the results of our
model have been compared successfully only with micro-
scopic computer simulations, we think that it would be very
challenging to measure these same quantities in the labora-

tory, in order to make comparisons with real-life experi-
ments.
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APPENDIX A: SOME PROPERTIES OF THE TRANSFER
MATRIX

The N-dimensional blocks of the M matrix are related to
the reflection and transmission matrices r , t for left incidence
and r� , t� for right incidence as

r = − �−1�, t� = �−1 �A1a�

t = ��†�−1, r� = ��−1. �A1b�

The physical property of flux conservation �FC� requires
the M matrix to satisfy the pseudounitarity condition

M†�zM = �z. �A2�

This is the only condition that M satisfies in the unitary, or
�=2, case. If, in addition, the system is time-reversal invari-
ant �TRI�, i.e., in the orthogonal case �=1, we have the extra
condition

M* = �xM�x, �A3�

which implies

M22 = �M11�*, M21 = �M12�*, �A4�

so that in Eq. �2.1� only the two blocks M11 and M12, or �
and �, need be considered. The relation with the reflection
and transmission matrices is now

r = − ��*�−1�*, t� = ��*�−1, �A5a�

t = ��†�−1, r� = ���*�−1. �A5b�

If the system is time-reversal invariant the matrix � for the
BB, defined in Eq. �2.4�, must satisfy the relations

�* = �x��x, �A6�

so that

�21 = ��12�*, �A7a�

�22 = ��11�*. �A7b�

Introducing the notation
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1̄ = 2, 2̄ = 1, �A8�

the TRI relations �A7b� can be written as

�ab
ī j̄ = ��ab

ij �*. �A9�

APPENDIX B: EVANESCENT MODES
AND THE EFFECTIVE POTENTIAL

In this appendix we define the effective potential for a
delta slice that was introduced in Eqs. �3.14� and �3.16�.
Consider a problem admitting N open channels and N�
closed ones. We shall eventually be interested in the limit
N�→�. The total number of channels will be denoted by
NT=N+N�. It will be convenient to define projection opera-
tors P and Q �with P+Q= I� unto open and closed channels,
respectively, i.e.,

P = �
a=1

N

��a���a� , �B1a�

Q = �
a=N+1

NT

��a���a� , �B1b�

where ��a� represents the “transverse” state defined in Eq.
�3.3�. The most general solution of the Schrödinger equation
on either side of the scattering system contains the following:

�i� Incoming- and outgoing-wave amplitudes for all the
open channels. We denote by ãP

�1�, ãP
�2� the N-component vec-

tors of incoming open-channel amplitudes on the left and

right of the system, respectively, while b̃P
�1�, b̃P

�2� denote the
corresponding outgoing open-channel amplitudes.

�ii� “Outgoing” closed-channel amplitudes, denoted by

the N�-component vectors b̃Q
�1�, b̃Q

�2�, on the left and right of
the system, respectively: these are the components that de-
crease exponentially at infinity. The N�-component vectors
ãQ

�1�, ãQ
�2� represent the “incoming” closed-channel ampli-

tudes, i.e., the components that increase exponentially at in-
finity. In order to have a normalizable �in the Dirac delta-
function sense� wave function, closed channels can only give
an exponentially vanishing contribution at infinity, so that the
components ãQ

�1�, ãQ
�2�, which we keep for convenience in the

following equation, will eventually be set equal to zero. We
shall also use the notation �̃PP� P�P, etc. The wave ampli-
tudes on the two sides are then related by the “extended
transfer matrix” �10� as follows:

�B2�

Here we are using the notation of Ref. �10�, which was de-
veloped in terms of incoming-and outgoing-wave ampli-
tudes, both for the S matrix and for the M matrix. This re-

sults in an asymmetry in the notation in the two vectors
appearing in Eq. �B2�. Perhaps a more common notation
expresses the M matrix in terms of waves that travel to the
right and to the left, giving a more symmetric definition.

The extended transfer matrix of Eq. �B2�, which will be

denoted by M̃, contains four NT�NT matrix blocks. When
we set, as we already mentioned, the amplitudes aQ

�1�=aQ
�2�

=0 and consider, as given data, the 2N amplitudes aP
�1�, bP

�1�,
we obtain a set of 2�N+N�� equations in the same number of
unknowns: aP

�2�, bP
�2�, bQ

�1�bQ
�2�.

The “open-channel transfer matrix” of Eq. �2.1�, that re-
lates the open-channel amplitudes on the two sides as

�bP
�2�

aP
�2� 
 = �� �

� �

�aP

�1�

bP
�1� 
 , �B3�

can be obtained from the extended transfer matrix of Eq.
�B2� by eliminating the closed-channel amplitudes bQ

�1�bQ
�2�, to

obtain the four N�N blocks

� = �̃PP − �̃PQ
1

�̃QQ

�̃QP, �B4a�

� = �̃PP − �̃PQ
1

�̃QQ

�̃QP, �B4b�

� = �̃PP − �̃PQ
1

�̃QQ

�̃QP, �B4c�

� = �̃PP − �̃PQ
1

�̃QQ

�̃QP. �B4d�

For a delta slice centered at x=0 and described by the
potential of Eq. �3.7�, one finds the following extended trans-
fer matrix:

M̃ = � �̃ �̃

�̃* �̃*
 = � INT
+

1

2i

1
�K

u
1

�K

1

2i

1
�K

u
1

�K

−
1

2i

1
�K

u
1

�K
INT

−
1

2i

1
�K

u
1

�K
� .

�B5�

In this equation, INT
denotes the NT-dimensional unit matrix;

u is the NT�NT matrix constructed from the matrix elements
uab of Eq. �3.7b�; K is the diagonal NT�NT matrix Kab
=ka�ab; for open channels �a=1, ¯ ,N�, ka is defined as the
real positive square root of the RHS of Eq. �3.12�; for closed
channels �a=N+1, ¯ ,NT�, we define ka= i�a, �a being real
and positive. It will be convenient to write

KPP � kP, �B6a�

KQQ � i�Q. �B6b�

Substituting the extended transfer matrix of Eq. �B5� into Eq.
�B4� we find, for the blocks of the open-channel transfer
matrix
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� = IN +
1

2i

1
�kP

ûPP
1

�kP

, �B7a�

� =
1

2i

1
�kP

ûPP
1

�kP

, �B7b�

where ûPP is the “effective potential” referred to in the text,
Eq. �3.16�, and defined as

ûPP = uPP − uPQ
1

�2�Q

1

IN� +
1

�2�Q

uQQ
1

�2�Q

1
�2�Q

uQP.

�B8�

For the present scattering problem associated with the po-
tential of Eq. �3.7�, the reflection and transmission ampli-
tudes to open channels are to be obtained from Eq. �A5�,
where � and � are given in Eq. �B7� in terms of the effective
potential of Eq. �B8�.

APPENDIX C: THE FOURTH-ORDER TERM IN
THE SECOND-MOMENT EXPANSION (3.31c)

We go back to the expression for the second moments of
� for the BB, Eq. �3.31�. The terms in the line �3.31b� vanish,
being third order in the individual ��r�ab

ij and hence in the
potentials �v̂r�ab �see Eq. �3.20��. The fourth-order terms are
given in the line �3.31c�: only the first of these three terms
survives; in the other two there is no way to pair the scatterer
indices so as to get a non-vanishing result �remember that the
various �r’s are statistically independent and have zero aver-
age�. For the nonvanishing term we have �see Eq. �3.14��

����2��ab
ij ���2��cd

hl ��L

= �
r�s

t�u

���r�s�ab
ij ��t�u�cd

hl � �C1a�

= �
r�s

t�u

�
����

��v̂r�a���v̂s���b�v̂t�c���v̂u���d�

� �
����

���r�a��
i�� ��s���b

��j ��t�c��
h����u���d

��l � �C1b�

=�
r�s

�
����

��v̂r�a���v̂r�c���

���v̂s���b�v̂s���d� �
����

���r�a��
i�� ��s���b

��j ��r�c��
h����s���d

��l �

�C1c�

= �
����

�2
�v��a��,c���

d

�2
�v����b,��d�

d

· � �
����

�
r�s

���r�a��
i�� ��s���b

��j ��r�c��
h����s���d

��l �d2� . �C1d�

We now take the DWSL and find �see Eq. �3.33��

lim
DWS

����2��ab
ij ���2��cd

hl ��L = �
����

C�a��,c���
�la���k�lc���k�

C���b,��d�
�l��b�k�l��d�k�

� �
����

�a��,��b,c��,��d
i��,��j,h��,��l �k;R��L�� ,

�C2�

in analogy with Eq. �3.46�. We have defined

�a��,��b,c��,��d
i��,��j,h��,��l �k;R��L��

=� �
R��L�

�a��
i�� �x����b

��j �x���c��
h���x����d

��l �x��dxdx�,

�C3a�

=
�− �i+h+��+��

iK2 � sin
K1 + K2

2
�L

K1 + K2

2

− e−iK2/2�L

sin
K1�L

2

K1

2
� .

�C3b�

Here, R��L� denotes the region of integration �x�x��, i.e.,
half a square of size �L. Eqs. �C3a� and �C3b� are analogous
to the earlier definitions in Eqs. �3.41� and �3.42�. Equation
�C3b� is valid for K1�0 and K2�0. The other possibilities
are

�a��,��b,c��,��d
i��,��j,h��,��l �k;R��L��

= �− �i+h+��+�� ��L�2

2
, K1 = K2 = 0 �C3c�

=�− �i+h+��+�� 1

iK2� sin
K2�L

2

K2

2

− e−iK2�L/2�L�,

K1 = 0, K2 � 0 �C3d�

=�− �i+h+��+�� 1

iK1�eiK1�L/2�L −

sin
K1�L

2

K1

2
�,

K1 � 0, K2 = 0. �C3e�

We have defined

K1 = Ka��,c��
i��,h�� , �C4a�

K2 = K��b,��d
��j,��l . �C4b�
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We see from Eqs. �C3b�–�C3e�, or directly from the inte-
gral definition �C3a�, that in an expansion in powers of �L,
the leading term is quadratic in �L, i.e.,

�a��,��b,c��,��d
i��,��j,h��,��l �k;R��L�� = �− �i+h+��+�� ��L�2

2
+ ¯ ,

�C5�

so that the leading term, in a similar expansion, of the fourth-
order contribution to the second moments of � in the DWSL,
Eq. �C2�, behaves as

lim
DWS

����2��ab
ij ���2��cd

hl ��L = �
����

C�a��,c���
�la���k�lc���k�

�
C���b,��d�

�l��b�k�l��d�k�
�

����

�− �i+h+��+��

�� ��L�2

2
+ O��L�3
 . �C6�

This is the result mentioned at the end of Sec. III B 2 b, right
above Eq. �3.49�.

In the above analysis, the BB lies in the interval
�−�L /2 ,�L /2�. If it is shifted to the interval �L ,L+�L�, Eq.
�C2� is modified as

lim
DWS

����2��ab
ij ���2��cd

hl �L,�L

= �
����

C�a��,c���
�la���k�lc���k�

C���b,��d�
�l��b�k�l��d�k�

� �
����

�a��,��b,c��,��d
i��,��j,h��,��l �k;R��L��ei�K1+K2��L+�L/2�, �C7�

in analogy with Eq. �3.50�, while Eq. �C6� becomes

lim
DWS

����2��ab
ij ���2��cd

hl �L,�L

= �
����

C�a��,c���
�la���k�lc���k�

C���b,��d�
�l��b�k�l��d�k�

� �
����

�− �i+h+��+���ei�K1+K2�L ��L�2

2
+ O��L�3
 . �C8�

APPENDIX D: ANALYSIS OF THE GENERAL
TERM OCCURRING IN THE CALCULATION

OF THE pth MOMENT OF � FOR THE BB

Equation �3.31� which gives the expansion of a second
moment of � in terms of the ����’s, and hence to various
orders in the individual �r’s, can be generalized to an arbi-
trary pth moment as

��a1b1

i1j1
¯ �apbp

ipjp ��L = �
�1,¯,�p

m

�����1��a1b1

i1j1
¯ ����p��apbp

ipjp ��L.

�D1�

In the analysis that follows the BB will be centered at the
origin. The term under the summation sign in this last equa-
tion is of order �1+ ¯ +�p in the individual ��r�ab

ij ’s, and
hence of the same order in the potential matrix elements
�v̂r�ab’s; it survives only if it is of even order in these quan-
tities, i.e., if �1+ ¯ +�p=2q, say.

Using, for convenience, a simplified notation for the indi-
ces, we express the term of order 2q under the summation
sign in Eq. �D1� as

�����1��ab
ij
¯ ����p��ef

mn��L = �
r1�¯�r�1

¯

t1�¯�t�p

���r1
¯ �r�1

�ab
ij
¯ ��t1

¯ �t�p
�ef

mn�

= �
r1,¯,r�1

¯

t1,¯,t�p

�
�1,¯,��1−1

¯

�1,¯,��p−1

��v̂r1
�a�1

¯ �v̂r�1
���1−1b ¯ �v̂t1

�e�1
¯ �v̂t�p

���p−1f�

� �
�1,¯,��1−1

¯

�1,¯,��p−1

��r1
�a�1

i�1
¯ ��r�1

�
��1−1b
��1−1j

¯ ��t1
�e�1

m�1
¯ ��t�p

�
��p−1f
��p−1n

� h�r1 − r2� ¯ h�r�1−1 − r�1
� ¯ h�t1 − t2� ¯ h�t�p−1 − t�p

�

� �
�1,¯,��1−1

¯

�1,¯,��p−1

�
�1,¯,��1−1

¯

�1,¯,��p−1

Fa�1,¯,��1−1b;¯;e�1,¯,��p−1f
i�1,¯,��1−1j;¯;m�1,¯,��p−1n

. �D2�
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We have introduced the step function h�r−s� �=1 for r�s
and =0 for r�s� to implement the correct range of summa-
tion of the scatterer indices. The function F defined in the
last line can be read off from the equation itself; it has �1
+ ¯ +�p=2q pairs of upper and lower indices and has the
structure

Fa1b1,¯,a2qb2q

i1j1,¯,i2qj2q = �
r1,¯,r2q

��v̂r1
�a1b1

¯ �v̂r2q
�a2qb2q

�

� fa1b1,¯,a2qb2q

i1j1,¯,i2qj2q �r1, ¯ ,r2q� , �D3�

where the function fa1b1,¯,a2qb2q

i1j1¯,i2qj2q �r1 , ¯ ,r2q� is given by

fa1b1,¯,a2qb2q

i1j1,¯,i2qj2q �r1, ¯ ,r2q� = ��r1
�a1b1

i1j1
¯ ��r2q

�a2qb2q

i2qj2q

� �i=1
�2q−1

h�ri − ri+1� , �D4�

where the prime in the product sign means i��1 ,�1
+�2 , ¯ ,�1+ ¯ +�p−1. Two particular examples of the
structure �D3� were already encountered earlier, in Eqs.
�3.32b� and �C1b� above.

The expectation value appearing in Eq. �D3� can be
written in terms of the cumulants of the various blocks
of �v̂r�ab’s into which one can partition the product
�v̂r1

�a1b1
¯ �v̂r2q

�a2qb2q
. We first give a few examples, and then

the general expression.
�i� q=1. One can write �see Eq. �3.21b��

��v̂r1
�a1b1

�v̂r2
�a2b2

� = �2
�v��a1b1,a2b2��r1r2

, �D5�

where a second cumulant coincides with the corresponding
second moment, i.e.,

�2
�v��a1b1,a2b2� = �2

�v��a1b1,a2b2� , �D6�

due to the vanishing of the first moments �Eq. �3.21a��.
�ii� For q=2 we have

��v̂r1
�a1b1

�v̂r2
�a2b2

�v̂r3
�a3b3

�v̂r4
�a4b4

�

= ��2
�v��a1b1,a2b2��2

�v��a3b3,a4b4��r1r2
�r3r4

+ �2
�v��a1b1,a3b3��2

�v��a2b2,a4b4��r1r3
�r2r4

+ �2
�v��a1b1,a4b4��2

�v��a2b2,a3b3��r1r4
�r2r3

� �D7a�

+ �4
�v��a1b1,a2b2,a3b3,a4b4��r1r2r3r4

, �D7b�

where a fourth cumulant is defined in the usual way, i.e.,

�4
�v��a1b1,a2b2,a3b3,a4b4� = �4

�v��a1b1,a2b2,a3b3,a4b4�

− �2
�v��a1b1,a2b2��2

�v��a3b3,a4b4�

− �2
�v��a1b1,a3b3��2

�v��a2b2,a4b4�

− �2
�v��a1b1,a4b4��2

�v��a2b2,a3b3� .

�D8�

In Eq. �D7�, the three lines ending in �D7a� contain all pos-
sible pair contractions, i.e., 3!!=3 terms altogether: this par-
tition of four elements can be represented by the Young dia-
gram

��

��
. �D9�

The last line �D7b� contains the only possible quartet �the
Kronecker delta with more than two indices is defined to be
nonzero only when all the indices are equal�. It can be rep-
resented by the Young diagram

���� . �D10�

�iii� For q=3 we have

��v̂r1
�a1b1

�v̂r2
�a2b2

�v̂r3
�a3b3

�v̂r4
�a4b4

�v̂r5
�a5b5

�v̂r6
�a6b6

�

= ��2
�v��a1b1,a2b2��2

�v��a3b3,a4b4�

��2
�v��a5b5,a6b6��r1r2

�r3r4
�r5r6

+ all possible combinations� �D11a�

+ ��4
�v��a1b1,a2b2,a3b3,a4b4�

��2
�v��a5b5,a6b6��r1r2r3r4

�r5r6

+ all possible combinations� �D11b�

+ �6
�v��a1b1,a2b2,a3b3,a4b4,a5b5,a6b6��r1r2r3r4r5r6

.

�D11c�

The three lines ending in Eq. �D11a� of this last equation
contain all possible pair contractions, i.e., 5!!=15 terms al-
together: this partition of 6 elements can be represented by
the Young diagram:

��

��

��

. �D12�

The two lines ending in Eq. �D11b� contain all possible com-
binations of one quartet plus one-pair contraction, i.e., � 6

2
�

=15 terms altogether: this partition of six elements can be
represented by the Young diagram

����

��
. �D13�

The last line �D11c� contains the only possible sextet. It can
be represented by the Young diagram

������ . �D14�

It seems plausible that the particular examples given
above can be generalized to arbitrary q, so that we can write
Fa1,. . .,b2q

i1,. . .,j2q of Eq. �D3� as
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Fa1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q = �
r1,¯,r2q

��v̂r1
�a1b1

¯ �v̂r2q
�a2qb2q

�

�fa1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �r1, . . . ,r2q� �D15a�

= �
r1,¯,r2q

���2
�v��a1b1,a2b2� ¯

� �2
�v��a2q−1b2q−1,a2qb2q��r1r2

¯ �r2q−1r2q

+ all possible combinations�� �D15b�

+ ��4
�v��a1b1,a2b2,a3b3,a4b4�

��2
�v��a5b5,a6b6� ¯ �2

�v��a2q−1b2q−1,a2qb2q�

� �r1r2r3r4
�r5r6

¯ �r2q−1r2q

+ all possible combinations� �D15c�

� + ¯ + �2q
�v��a1b1,a2b2, . . . ,a2qb2q��r1r2¯r2q

�

� fa1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �r1, ¯ ,r2q� . �D15d�

Again, the partition of 2q elements contained inside each
square bracket can be represented by a Young diagram. The
first square bracket ending in �D15b� contains all possible
pair contractions, of which there are �2q−1�!! altogether.

Equation �D15� shows that we can write Fa1,. . .,b2q

i1,. . .,j2q �omit-
ting, for simplicity, the lower and upper indices, as well as
the index �v� in the cumulants� as

F = ��2�a1b1,a2b2�
d

¯

�2�a2q−1b2q−1,a2qb2q�
d

� �
r2r4¯r2q

f�r2,r2, . . . ,r2q,r2q�dq

+ all possible combinations
 �D16a�

+ d��4�a1b1,a2b2,a3b3,a4b4�
d2

�
�2�a5b5,a6b6�

d
¯

�2�a2q−1b2q−1,a2qb2q�
d

� �
r4r6¯r2q

f�r4,r4,r4,r4,r6,r6, . . . ,r2q,r2q�dq−1

+ all possible combinations
 �D16b�

+ ¯ + dq−1�2q�a1b1, . . . ,a2qb2q�
dq �

r2q

f�r2q, . . . ,r2q�d .

�D16c�

The cumulants �2t appearing in Eq. �D16� are defined, for
t=1,2, in Eqs. �D6� and �D8�, respectively.

At this point we take the DWSL defined by Eqs. �3.39�.
The various fractions �2t /dt appearing in Eq. �D16� are finite

because of the scaling assumed in Eq. �3.40�. Also, the vari-
ous summations in Eq. �D16� tend to finite integrals, and all
the terms with factors of d “left over,” i.e., from Eq. �D16b�
up to �D16c�, vanish. As a consequence, the cumulants
�4 , ¯ ,�2q, do not contribute in the DWSL: this is the
central-limit theorem �CLT� that was discussed at the end of
Sec. II, at the end of Sec. III B and in Sec. III C. The second
cumulants �2 enter through the various mfp’s, as we see from
Eq. �3.36�.

In the DWSL we thus write Eq. �D3� as

lim
DWS

�
r1,¯,r2q

��v̂r1
�a1b1

¯ �v̂r2q
�a2qb2q

�fa1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �r1, . . . ,r2q�

=
C�a1b1,a2b2� ¯ C�a2q−1b2q−1,a2qb2q�

�la1b1
la2b2

¯ la2q−1b2q−1
la2qb2q

��a1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �k;R��L�;12,34, . . . ,2q − 1 2q�

+ all possible combinations. �D17�

We have used Eq. �3.33� and we have defined

�a1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �k;R��L�;12, . . . ,2q − 1 2q�

= �
�L

¯ �
�L

fa1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �x2,x2, . . . ,x2q,x2q�dx2 ¯ dx2q

=� ¯ �
R���L�q

�a1b1

i1j1 �x2��a2b2

i2j2 �x2� ¯ �a2q−1b2q−1

i2q−1j2q−1 �x2q�

��a2qb2q

i2qj2q �x2q�dx2 ¯ dx2q. �D18�

Here, �ab
jl �x� is the continuous version of the function ��r�ab

jl

of Eq. �3.15�. The region of integration R� ��L�q arises
from the appropriate step functions, �D4�, that implement the
correct range of summation of the scatterer indices, and from
the type of pair contraction. We have added, in a symbolic
fashion, in the argument of �, the information about the
scatterer indices that have been contracted: in the above
cases, the contraction was r1=r2 ,r3=r4 , ¯ ,r2q−1=r2q. Equa-
tion �D17� �inserted in Eq. �D2�� and Eq. �D18� generalize
the earlier expressions �3.46� and �3.41�. One of the “pos-
sible combinations,” i.e., the one arising from the contraction
r1=r3, r2=r4, that would be indicated symbolically as 13, 24,
generalizes Eqs. �C2� and �C3�. In an expansion of the inte-
gral �D18� in powers of �L, the leading term clearly behaves
as

�a1b1,. . .,a2qb2q

i1j1,. . .,i2qj2q �k;R��L�� � ��L�q + ¯ . �D19�

Consider now the particular case of an even moment of
the BB �. For this purpose we set p=2t in the above analysis,
starting from Eq. �D1�. The lowest-order term in the expan-
sion of Eq. �D1� corresponds to �1= ¯ =�2t=1 and thus
to 2q=2t, in the notation introduced right after Eq. �D1�
�i.e., this term is of order 2t in the v̂r’s�; in the DWSL it is
found, by setting q= t in Eqs. �D17� and �D19�, that its lead-
ing term in an expansion in powers of �L behaves as
��L�t /�la1b1

¯ la2tb2t
. Higher-order terms in the expansion

�D1� for the same moment are higher order in �L. The con-
tribution to a second moment obtained above, Eq. �3.49�,
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represents, for t=1, a particular case of this general result.
For an odd moment with p=2t+1, the first term in the

expansion of Eq. �D1�, i.e., the one with �1= ¯ =�2t+1=1,
vanishes, because it is of odd order in the v̂r’s. The next-
order terms in the expansion �D1� have one of the �i=2 and
all the other �i’s equal to 1 �for instance, �1=2, �2= ¯

=�2t+1=1�. For these terms, 2q=2t+2, so that from Eqs.
�D17� and �D19� we see that these terms are of order
��L�t+1 /�la1b1

¯ la2t+2b2t+2
.

The conclusion of the last two paragraphs is not altered
when we translate the BB to the interval �L ,L+�L�. We have
thus proven, for the moments of �, the behavior that was
mentioned at the end of Sec. III B.

APPENDIX E: SOME USEFUL DETAILS FOR SEC. IV A

In the one-channel case, the quantity Kab,cd
ij,hl of Eq. �3.43�

and the diffusion coefficient Dab,cd
ij,hl �k ,L� of Eq. �3.52�, to be

used in the diffusion equation �3.56�, are given by

Kij,hl = ��− 1�i + �− 1� j+1 + �− 1�h + �− 1�l+1�k , �E1a�

Dij,hl�k,L� =
�− 1�i+h+1

2l
eiKij,hlL, �E1b�

respectively. We have omitted the channel indices, which
would take the value 1.

We can rewrite the pair of Eqs. �4.5�, after multiplying the
second one by eix0s, as

1

2

�A

�s
= A + 2br, �E2a�

�br

�s
+ x0bi = − A − 2br, �E2b�

�bi

�s
− x0br = 0, �E2c�

where

A�s� = 2���*� − 1, �E3a�

b�s� = br�s� + ibi�s� = ����se
ix0s. �E3b�

The quantities p1, p2 and p3 appearing in Eq. �4.7� are the
roots of the third degree polynomial P�p�= p3+x0

2p−2x0
2 and

are given by

p1 = u + v , �E4a�

p2 = −
1

2
�u + v� + i

�3

2
�u − v� , �E4b�

p3 = −
1

2
�u + v� − i

�3

2
�u − v� , �E4c�

with

u =
x0

�3
��1 + �3�3

x0
�2
1/2

+
3�3

x0
�1/3

,

v = −
x0

�3
��1 + �3�3

x0
�2
1/2

−
3�3

x0
�1/3

. �E5�

When x0�1, we expand u and v as

u =
x0

�3
�1 +

�3

x0
+

3

2x0
2 −

4�3

x0
3 −

105

8x0
4 + ¯ 
 , �E6a�

v = −
x0

�3
�1 −

�3

x0
+

3

2x0
2 +

4�3

x0
3 −

105

8x0
4 + ¯ 
 , �E6b�

and the roots are given approximately by

p1 � 2 −
8

x0
2 + O� 1

x0
4� , �E7a�

p2 � �− 1 + ix0� + � 4

x0
2 + i

3

2x0
� + O� 1

x0
3� , �E7b�

p3 = p2
*. �E7c�

We can thus write the exact solution �4.7� as a power series
in 1/x0 as

A�s� = e2s +
4

x0
2 �− �1 + 2s�e2s + e−s cos x0s� + O� 1

x0
3� ,

�E8a�

br�s� = −
1

x0
e−s sin x0s +

2

x0
2��1 −

3s

4
�e−s cos x0s − e2s


+ O� 1

x0
3� , �E8b�

bi�s� =
1

x0
�− e2s + e−s cos x0s� −

3

x0
2 �s − 1�e−s sin x0s + O� 1

x0
3� .

�E8c�
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